On the Nature of the Virasoro Algebra

被引:0
作者
Boris A. Kupershmidt
机构
[1] The University of Tennessee Space Institute,
来源
Journal of Nonlinear Mathematical Physics | 1999年 / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The multiplication in the Virasoro algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{gathered} {[{e_p},{e_q}]} = (p - q){e_{p + q}} + \theta \,({p^3} - p)\,{\delta _{p + q}},\quad p,q \in \,Z, \\ [\theta ,{e_p}] = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \hfill \\ \end{gathered} $$\end{document} comes from the commutator [ep, eq] = ep * eq – eq * ep in a quasiassociative algebra with the multiplication *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{gathered} {e_p}*{e_q} = - \frac{{q(1 +\epsilon q)}}{{1 + \epsilon(p + q)}}{e_{p + q}} + \frac{1}{2}\theta [{p^3} - p + (\epsilon - \epsilon{^{ - 1}}){p^2}]\,\delta _{p + q}^0, \hfill \\ {e_p}*\theta = \,\theta *{e_p} = 0.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \hfill \\ \end{gathered}$$\end{document} The multiplication in a quasiassociative algebra R satisfies the property **\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a*(b*c) - (a*b)*c = b*(a*c) - (b*a)*c,\quad a,b,c \in \mathcal{R}.$$\end{document} This propertyis necessaryand sufficient for the Lie algebra Lie(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}$$\end{document}) to have a phase space. The above formulae are put into a cohomological framework, with the relevant complex being different from the Hochschild one even when the relevant quasiassociative algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R}$$\end{document} becomes associative. Formula (*) above also has a differential-variational counterpart.
引用
收藏
页码:222 / 245
页数:23
相关论文
共 7 条
[1]  
Hochschild G(1945)On the Cohomology Groups of an Associative Algebra Ann. Math. 46 58-67
[2]  
Koszul J-L(1961)Domaines Bornès Homogénes Et Orbites De Groupes De Transformations Affines Bull. Soc. Math. France 89 515-533
[3]  
Kupershmidt BA(1994)Non-Abelian Phase Spaces J. Phys. A 27 2801-2810
[4]  
Kupershmidt BA(1998)Quantum Differential Forms J. Nonlin. Math. Phys. 5 245-288
[5]  
Vinberg EB(1960)Homogeneous Cones Dokl. Akad. Nauk SSSR 133 9-12
[6]  
Vinberg EB(1961)Convex Homogeneous Domain Dokl. Akad. Nauk SSSR 141 521-524
[7]  
Vinberg EB(1963)The Theory of Convex Homogeneous Cones Trudyu Mosc. Math. Obshchestva 12 303-358