Turing pattern amplitude equation for a model glycolytic reaction-diffusion system

被引:0
作者
A. K. Dutt
机构
[1] University of the West of England,Faculty of Computing, Engineering and Mathematical Sciences, Du Pont Building
来源
Journal of Mathematical Chemistry | 2010年 / 48卷
关键词
Turing patterns; Reaction-Diffusion systems; Amplitude equation; Glycolytic oscillations;
D O I
暂无
中图分类号
学科分类号
摘要
For a reaction-diffusion system of glycolytic oscillations containing analytical steady state solution in complicated algebraic form, Turing instability condition and the critical wavenumber at the Turing bifurcation point, have been derived by a linear stability analysis. In the framework of a weakly nonlinear theory, these relations have been subsequently used to derive an amplitude equation, which interprets the structural transitions and stability of various forms of Turing structures. Amplitude equation also conforms to the expectation that time-invariant amplitudes are independent of complexing reaction with the activator species.
引用
收藏
页码:841 / 855
页数:14
相关论文
共 50 条
[41]   Pattern Formation in a Reaction-Diffusion System with Space-Dependent Feed Rate [J].
Kolokolnikov, Theodore ;
Wei, Juncheng .
SIAM REVIEW, 2018, 60 (03) :626-645
[42]   Turing-type instabilities in bulk-surface reaction-diffusion systems [J].
Raetz, Andreas .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 289 :142-152
[43]   Necessary conditions for Turing instability in the reaction-diffusion systems associated with replicator dynamics [J].
Kumar, Manoj ;
Shaiju, A. J. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)
[44]   Pacemakers in a Reaction-Diffusion Mechanics System [J].
R. H. Keldermann ;
M. P. Nash ;
A. V. Panfilov .
Journal of Statistical Physics, 2007, 128 :375-392
[45]   Pacemakers in a reaction-diffusion mechanics system [J].
Keldermann, R. H. ;
Nash, M. P. ;
Panfilov, A. V. .
JOURNAL OF STATISTICAL PHYSICS, 2007, 128 (1-2) :375-392
[46]   Internal stabilizability for a reaction-diffusion system [J].
Sen, Zhou .
PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, :133-137
[47]   Convergence rates for a reaction-diffusion system [J].
Kirane, M ;
Tatar, NE .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (02) :347-357
[48]   Pattern invariance for reaction-diffusion systems on complex networks [J].
Giulia Cencetti ;
Pau Clusella ;
Duccio Fanelli .
Scientific Reports, 8
[49]   PATTERN FORMATION IN REACTION-DIFFUSION SYSTEMS ON GROWNING DOMAINS [J].
Gonzalez, Libardo A. ;
Vanegas, Juan C. ;
Garzon, Diego A. .
REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2009, 25 (02) :145-161
[50]   Study of Turing patterns in a SI reaction-diffusion propagation system based on network and non-network environments [J].
Tang, Yuxuan ;
Shen, Shuling ;
Zhu, Linhe .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (01)