A 1-dimensional nonlinear filtering problem

被引:0
|
作者
Guang Yu Li
Ke Wang
机构
[1] Wenzhou Univercity,Department of Mathematics, Oujiang College
[2] Harbin Institute of Technology,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2010年 / 26卷
关键词
Itô’s formula; filtering; stochastic differential equation; 60H05; 93E11;
D O I
暂无
中图分类号
学科分类号
摘要
We will concentrate on a 1-dimensional nonlinear filtering problem, which allows an explicit solution in terms of a stochastic differential equation for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \hat X_t $$\end{document}.
引用
收藏
页码:555 / 560
页数:5
相关论文
共 50 条
  • [31] Global Null Controllability of the 1-Dimensional Nonlinear Slow Diffusion Equation
    Jean-Michel CORON
    Jesǘs Ildefonso DIAZ
    Abdelmalek DRICI
    Tommaso MINGAZZINI
    Chinese Annals of Mathematics(Series B), 2013, 34 (03) : 333 - 344
  • [32] Global null controllability of the 1-dimensional nonlinear slow diffusion equation
    Coron, Jean-Michel
    Ildefonso Diaz, Jesus
    Drici, Abdelmalek
    Mingazzini, Tommaso
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (03) : 333 - 344
  • [33] Long time stability result for 1-dimensional nonlinear Schrodinger equation
    Chen, Qiaoling
    Cong, Hongzi
    Meng, Lulu
    Wu, Xiaoqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 315 : 90 - 121
  • [35] SOLUTION OF SOLIDIFICATION PROBLEM OF A 1-DIMENSIONAL MEDIUM BY A NEW NUMERICAL METHOD
    SCHNIEWIND, J
    JOURNAL OF THE IRON AND STEEL INSTITUTE, 1963, 201 (07): : 594 - &
  • [36] 1-DIMENSIONAL HARNACK ESTIMATES
    Duzgun, Fatma Gamze
    Gianazza, Ugo
    Vespri, Vincenzo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (03): : 675 - 685
  • [37] CONCERNING 1-DIMENSIONAL SUPERCONDUCTIVITY
    BYCHKOV, YA
    GORKOV, LP
    DZYALOSH.IE
    JETP LETTERS-USSR, 1965, 2 (03): : 92 - &
  • [39] 1-DIMENSIONAL CONDUCTIVITY KERNEL
    DOBROTT, DR
    PHYSICS OF FLUIDS, 1965, 8 (05) : 1008 - &
  • [40] RELATIVELY 1-DIMENSIONAL COMPLEXES
    WALL, CTC
    MATHEMATISCHE ZEITSCHRIFT, 1980, 172 (01) : 77 - 79