On Pseudofunctors Sending Groups to 2-Groups

被引:0
作者
Alan S. Cigoli
Sandra Mantovani
Giuseppe Metere
机构
[1] Università degli Studi di Torino,Dipartimento di Matematica “Giuseppe Peano”
[2] Università degli Studi di Milano,Dipartimento di Matematica “Federigo Enriques”
[3] Università degli Studi di Palermo,Dipartimento di Matematica e Informatica
来源
Mediterranean Journal of Mathematics | 2023年 / 20卷
关键词
Pseudofunctor; internal groups; 2-groups; monoidal opfibration; 18C40; 18D30; 18G45; 18M05;
D O I
暂无
中图分类号
学科分类号
摘要
For a category B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{B}}$$\end{document} with finite products, we first characterize pseudofunctors from B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{B}}$$\end{document} to Cat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}\textsf{at}$$\end{document} whose associated opfibration is Cartesian monoidal. Among those, we then characterize the ones which extend to pseudofunctors from internal groups to 2-groups. If B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{B}}$$\end{document} is additive, this is the case precisely when the associated opfibration has groupoidal fibres.
引用
收藏
相关论文
共 20 条
[1]  
Baez J(2004)Higher-dimensional algebra V: 2-Groups Theory Appl. Categ. 12 423-491
[2]  
Lauda A(2004)Extensions with abelian kernel in protomodular categories Georg. Math. J. 11 645-654
[3]  
Bourn D(2014)A push forward construction and the comprehensive factorization for internal crossed modules Appl. Categ. Struct. 22 931-960
[4]  
Janelidze G(2022)Fibred-categorical obstruction theory J. Algebra 593 105-141
[5]  
Cigoli AS(2016)Extension theory and the calculus of butterflies J. Algebra 458 87-119
[6]  
Mantovani S(1997)Monoidal Bicategories and Hopf algebroids Adv. Math. 129 99-157
[7]  
Metere G(2000)Balanced coalgebroids Theory Appl. Categ. 7 71-147
[8]  
Cigoli AS(2020)Monoidal Grothendieck construction Theory Appl. Categ. 35 1159-1207
[9]  
Mantovani S(2008)Framed bicategories and monoidal fibrations Theory Appl. Categ. 20 650-738
[10]  
Metere G(2003)On the categorical structure of J. Pure Appl. Algebra 177 303-308