Using deep learning method to identify left ventricular hypertrophy on echocardiography

被引:18
作者
Yu, Xiang [1 ]
Yao, Xinxia [2 ]
Wu, Bifeng [3 ]
Zhou, Hong [2 ]
Xia, Shudong [1 ]
Su, Wenwen [1 ]
Wu, Yuanyuan [1 ]
Zheng, Xiaoye [3 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 4, Sch Med, Dept Cardiol, N1 Shangcheng Ave, Yiwu 322000, Peoples R China
[2] Zhejiang Univ, Key Lab Biomed Engn, Minist Educ, Zheda Ave, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Affiliated Hosp 1, Sch Med, Dept Cardiol, Hangzhou 310006, Peoples R China
关键词
Left ventricular hypertrophy; Deep learning; Echocardiography; AMERICAN-COLLEGE; DIAGNOSIS; GUIDELINE; CRITERIA; MASS;
D O I
10.1007/s10554-021-02461-3
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Left ventricular hypertrophy (LVH) is an independent prognostic factor for cardiovascular events and it can be detected by echocardiography in the early stage. In this study, we aim to develop a semi-automatic diagnostic network based on deep learning algorithms to detect LVH. Methods We retrospectively collected 1610 transthoracic echocardiograms, included 724 patients [189 hypertensive heart disease (HHD), 218 hypertrophic cardiomyopathy (HCM), and 58 cardiac amyloidosis (CA), along with 259 controls]. The diagnosis of LVH was defined by two experienced clinicians. For the deep learning architecture, we introduced ResNet and U-net++ to complete classification and segmentation tasks respectively. The models were trained and validated independently. Then, we connected the best-performing models to form the final framework and tested its capabilities. Results In terms of individual networks, the view classification model produced AUC = 1.0. The AUC of the LVH detection model was 0.98 (95% CI 0.94-0.99), with corresponding sensitivity and specificity of 94.0% (95% CI 85.3-98.7%) and 91.6% (95% CI 84.6-96.1%) respectively. For etiology identification, the independent model yielded good results with AUC = 0.90 (95% CI 0.82-0.95) for HCM, AUC = 0.94 (95% CI 0.88-0.98) for CA, and AUC = 0.88 (95% CI 0.80-0.93) for HHD. Finally, our final integrated framework automatically classified four conditions (Normal, HCM, CA, and HHD), which achieved an average of AUC 0.91, with an average sensitivity and specificity of 83.7% and 90.0%. Conclusion Deep learning architecture has the ability to detect LVH and even distinguish the latent etiology of LVH.
引用
收藏
页码:759 / 769
页数:11
相关论文
共 30 条
[1]  
Amer A, 2020, IEEE ENG MED BIO, P2019, DOI [10.1109/EMBC44109.2020.9175436, 10.1109/embc44109.2020.9175436]
[2]   Left Ventricular Mass and Hypertrophy by Echocardiography and Cardiac Magnetic Resonance: The Multi-Ethnic Study of Atherosclerosis [J].
Armstrong, Anderson C. ;
Gjesdal, Ola ;
Almeida, Andre ;
Nacif, Marcelo ;
Wu, Colin ;
Bluemke, David A. ;
Brumback, Lyndia ;
Lima, Joao A. C. .
ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2014, 31 (01) :12-20
[3]   Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling [J].
Biffi, Carlo ;
Oktay, Ozan ;
Tarroni, Giacomo ;
Bai, Wenjia ;
De Marvao, Antonio ;
Doumou, Georgia ;
Rajchl, Martin ;
Bedair, Reem ;
Prasad, Sanjay ;
Cook, Stuart ;
O'Regan, Declan ;
Rueckert, Daniel .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :464-471
[4]   Global and Local Interpretability for Cardiac MRI Classification [J].
Clough, James R. ;
Oksuz, Ilkay ;
Puyol-Anton, Esther ;
Ruijsink, Bram ;
King, Andrew P. ;
Schnabel, Julia A. .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 :656-664
[5]   Variability in echocardiographic measurements of left ventricular function in septic shock patients [J].
De Geer, Lina ;
Oscarsson, Anna ;
Engvall, Jan .
CARDIOVASCULAR ULTRASOUND, 2015, 13
[6]   Deep learning interpretation of echocardiograms [J].
Ghorbani, Amirata ;
Ouyang, David ;
Abid, Abubakar ;
He, Bryan ;
Chen, Jonathan H. ;
Harrington, Robert A. ;
Liang, David H. ;
Ashley, Euan A. ;
Zou, James Y. .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[7]   2010 ACCF/AHA Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines [J].
Greenland, Philip ;
Alpert, Joseph S. ;
Beller, George A. ;
Benjamin, Emelia J. ;
Budoff, Matthew J. ;
Fayad, Zahi A. ;
Foster, Elyse ;
Hlatky, Mark. A. ;
Hodgson, John Mc B. ;
Kushner, Frederick G. ;
Lauer, Michael S. ;
Shaw, Leslee J. ;
Smith, Sidney C., Jr. ;
Taylor, Allen J. ;
Weintraub, William S. ;
Wenger, Nanette K. ;
Jacobs, Alice K. ;
Anderson, Jeffrey L. ;
Albert, Nancy ;
Buller, Christopher E. ;
Creager, Mark A. ;
Ettinger, Steven M. ;
Guyton, Robert A. ;
Halperin, Jonathan L. ;
Hochman, Judith S. ;
Kushner, Frederick G. ;
Nishimura, Rick ;
Ohman, E. Magnus ;
Page, Richard L. ;
Stevenson, William G. ;
Tarkington, Lynn G. ;
Yancy, Clyde W. ;
Lewin, John C. ;
May, Charlene ;
Bradfield, Lisa ;
Keller, Sue ;
Barrett, Erin A. ;
Denton, Beth ;
Brown, Nancy ;
Whitman, Gayle R. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2010, 56 (25) :E50-E103
[8]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[9]   Automated Recognition of Regional Wall Motion Abnormalities Through Deep Neural Network Interpretation of Transthoracic Echocardiography [J].
Huang, Mu-Shiang ;
Wang, Chi-Shiang ;
Chiang, Jung-Hsien ;
Liu, Ping-Yen ;
Tsai, Wei-Chuan .
CIRCULATION, 2020, 142 (16) :1510-1520
[10]   Steps to use artificial intelligence in echocardiography [J].
Kusunose, Kenya .
JOURNAL OF ECHOCARDIOGRAPHY, 2021, 19 (01) :21-27