Uniqueness and Non-uniqueness of Limit Cycles for Piecewise Linear Differential Systems with Three Zones and No Symmetry

被引:0
作者
Jaume Llibre
Enrique Ponce
Clàudia Valls
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Escuela Técnica Superior de Ingeniería,Departamento de Matemática Aplicada
[3] Universidade de Lisboa,Departamento de Matemática, Instituto Superior Técnico
来源
Journal of Nonlinear Science | 2015年 / 25卷
关键词
Nonlinear control systems; Periodic orbits; Limit cycles; Liénard piecewise linear differential systems; Primary 34C25; Secondary 34A34;
D O I
暂无
中图分类号
学科分类号
摘要
Some techniques for proving the existence and uniqueness of limit cycles for smooth differential systems are extended to continuous piecewise linear differential systems with two and three zones and no symmetry. For planar systems with three linearity zones, the existence of two limit cycles surrounding the only equilibrium point at the origin is rigorously shown for the first time. The usefulness of the achieved analytical results is illustrated by considering non-symmetric memristor-based electronic oscillators.
引用
收藏
页码:861 / 887
页数:26
相关论文
共 67 条
[1]  
Carletti T(2005)A note on existence and uniqueness of limit cycles for Liénard systems J. Math. Anal. Appl. 307 763-773
[2]  
Villari G(2002)On simplifying and classifying piecewise linear systems IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49 609-620
[3]  
Carmona V(1971)Memristor: the missing circuit element IEEE Trans. Circuit Theory CT–18 507-519
[4]  
Freire E(2011)Nonlinear dynamics of memristor oscillators IEEE Trans. Ciruits Syst. I: Regul. Pap. 58 1323-1336
[5]  
Ponce E(1996)On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations Nonlinearity 9 1489-1500
[6]  
Torres F(1990)Cubic Liénard equations with linear damping Nonlinearity 3 1015-1039
[7]  
Chua LO(1998)Bifurcation sets of continuous piecewise linear systems with two zones Int. J. Bifurc. Chaos 8 2073-2097
[8]  
Corinto F(2002)Bifurcation sets of continuous piecewise linear systems with three zones Int. J. Bifurc. Chaos 12 1675-1702
[9]  
Ascoli A(1999)Limit cycle bifurcation from center in symmetric piecewise-linear systems Int. J. Bifurc. Chaos 9 895-907
[10]  
Gilli M(1997)Hopf-like bifurcations in planar piecewise linear systems Publ. Matemàtiques 41 135-148