Gravity duals of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 SCFTs and asymptotic emergence of the electrostatic description

被引:0
作者
P. Marios Petropoulos
Konstadinos Sfetsos
Konstadinos Siampos
机构
[1] Centre de Physique Théorique,Department of Nuclear and Particle Physics, Faculty of Physics
[2] Ecole Polytechnique,Mécanique et Gravitation
[3] CNRS UMR 7644,undefined
[4] University of Athens,undefined
[5] Université de Mons Hainaut,undefined
关键词
Solitons Monopoles and Instantons; Supergravity Models; M-Theory;
D O I
10.1007/JHEP09(2014)057
中图分类号
学科分类号
摘要
We built the first eleven-dimensional supergravity solutions with SO(2, 4) × SO(3) ×U(1)R symmetry that exhibit the asymptotic emergence of an extra U(1) isometry. This enables us to make the connection with the usual electrostatics-quiver description. The solution is obtained via the Toda frame of Kähler surfaces with vanishing scalar curvature and SU(2) action.
引用
收藏
相关论文
共 44 条
[1]  
Maldacena JM(2001)Supergravity description of field theories on curved manifolds and a no go theorem Int. J. Mod. Phys. A 16 822-undefined
[2]  
Núñez C(2004)Bubbling AdS space and 1/2 BPS geometries JHEP 10 025-undefined
[3]  
Lin H(2012)The Gravity duals of N = 2 superconformal field theories JHEP 10 189-undefined
[4]  
Lunin O(2011)On Type IIA geometries dual to N = 2 SCFTs Nucl. Phys. B 849 549-undefined
[5]  
Maldacena JM(2011)The electrostatic view on M-theory LLM geometries JHEP 01 067-undefined
[6]  
Gaiotto D(2012)4d N = 2 superconformal linear quivers with type IIA duals JHEP 08 131-undefined
[7]  
Maldacena J(1990)Einstein-Weyl spaces and SU(∞) Toda fields Class. Quant. Grav. 7 L95-undefined
[8]  
Reid-Edwards RA(2013)Gravity duals of JHEP 11 118-undefined
[9]  
Stefanski B(1984) = 2 superconformal field theories with no electrostatic description Gen. Rel. Grav. 16 817-undefined
[10]  
Donos A(1988)Stationary Riemannian space-times with self-dual curvature Commun. Math. Phys. 115 267-undefined