The spectrum and some subdivisions of the spectrum of discrete generalized Cesàro operators on ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{p}$\end{document} (1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< p<\infty$\end{document})

被引:0
作者
Mustafa Yıldırım
Nuh Durna
机构
[1] Cumhuriyet University,Department of Mathematics, Faculty of Science
关键词
spectrum; fine spectrum; Cesàro operator; discrete generalized Cesàro operators; 40H05; 40C99; 46A35; 47A10;
D O I
10.1186/s13660-017-1464-2
中图分类号
学科分类号
摘要
The discrete generalized Cesàro matrix At=(ank)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{t}= ( a_{nk} ) $\end{document} is the triangular matrix with nonzero entries ank=tn−k/(n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{nk}=t^{n-k}/ ( n+1 )$\end{document}, where t∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in [ 0,1 ] $\end{document}. In this paper, boundedness, compactness, spectra, the fine spectra and subdivisions of the spectra of discrete generalized Cesàro operator on ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell_{p}$\end{document} (1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< p<\infty$\end{document}) have been determined.
引用
收藏
相关论文
共 36 条
  • [1] Rhaly HCJR(1982)Discrete generalized Cesàro operator Proc. Am. Math. Soc. 86 405-409
  • [2] Rhoades BE(1990)Lower bounds for some matrices, II Linear Multilinear Algebra 26 49-58
  • [3] Yildirim M(1996)The spectrum and fine spectrum of the compact Rhaly operator Indian J. Pure Appl. Math. 27 779-784
  • [4] Yildirim M(2001)The spectrum of Rhaly operator on Indian J. Pure Appl. Math. 32 191-198
  • [5] Wenger RB(1975)The fine spectra of the Hölder summability operator Indian J. Pure Appl. Math. 6 695-712
  • [6] González M(1985)The fine spectrum of the Cesàro operator in Arch. Math. (Basel) 44 355-358
  • [7] Rhoades BE(1989) ( Integral Equ. Oper. Theory 12 82-98
  • [8] Coşkun C(1997)) Turk. J. Math. 21 207-212
  • [9] Rhoades BE(2006)The fine spectra for weighted mean operator in Integral Equ. Oper. Theory 55 111-126
  • [10] Yildirim M(2015)The spectra and fine spectra for p-Cesàro operator Math. Slovaca 65 1137-1152