Parametrizations of dark energy models in the background of general non-canonical scalar field in D-dimensional fractal universe

被引:0
作者
Ujjal Debnath
Kazuharu Bamba
机构
[1] Indian Institute of Engineering Science and Technology,Department of Mathematics
[2] Fukushima University,Division of Human Support System, Faculty of Symbiotic Systems Science
来源
The European Physical Journal C | 2019年 / 79卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We have explored non-canonical scalar field model in the background of non-flat D-dimensional fractal Universe on the condition that the matter and scalar field are separately conserved. The potential V, scalar field ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, function f, densities, Hubble parameter and deceleration parameter can be expressed in terms of the redshift z and these depend on the equation of state parameter wϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{\phi }$$\end{document}. We have also investigated the cosmological analysis of four kinds of well known parametrization models. In graphically, we have analyzed the natures of potential, scalar field, function f, densities, the Hubble parameter and deceleration parameter. As a result, the best fitted values of the unknown parameters (w0,w1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{0},w_{1}$$\end{document}) of the parametrization models due to the joint data analysis (SNIa+BAO+CMB+Hubble) have been found. Furthermore, the minimum values of χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi ^{2}$$\end{document} function have been obtained. Also we have plotted the graphs for different confidence levels 66%, 90% and 99% contours for (w0,w1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w_{0},~w_{1}$$\end{document}) by fixing the other parameters.
引用
收藏
相关论文
共 178 条
[1]  
Perlmutter DJ(1998)Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics Nature 391 51-undefined
[2]  
Briddle S(2003)undefined Science 299 1532-undefined
[3]  
Spergel DN(2003)undefined Astrophys. J. Suppl. 148 175-undefined
[4]  
Calabrese E(2009)undefined Phys. Rev. D 80 063539-undefined
[5]  
Wang Y(2016)undefined Phys. Rev. D 94 083521-undefined
[6]  
Dai M(2017)undefined Phys. Rev. D 96 043520-undefined
[7]  
Zhao M(1988)undefined Astrophys. J. 325 L17-undefined
[8]  
He D-Z(1998)undefined Phys. Rev. Lett. 80 1582-undefined
[9]  
Zhang J-F(2002)undefined Phys. Lett. B 545 23-undefined
[10]  
Zhang X(2018)undefined JCAP 1806 041-undefined