Stability of functional inequalities in matrix random normed spaces

被引:0
作者
Lee J.R. [1 ]
机构
[1] Department of Mathematics, Daejin University, Kyeonggi
关键词
Fixed point method; Functional inequality; Hyers-Ulam stability; Matrix random normed space; Operator space;
D O I
10.1186/1029-242X-2013-569
中图分类号
学科分类号
摘要
In this paper, we prove the Hyers-Ulam stability of the Cauchy additive functional inequality and the Cauchy-Jensen additive functional inequality in matrix random normed spaces by using the fixed point method. ©2013 Lee; licensee Springer.
引用
收藏
相关论文
共 34 条
[1]  
Ruan Z.-J., Subspaces of C*-algebras, J. Funct. Anal., 76, pp. 217-230, (1988)
[2]  
Choi M.-D., Effros E., Injectivity and operator spaces, J. Funct. Anal., 24, pp. 156-209, (1977)
[3]  
Effros E., Ruan Z.-J., On the abstract characterization of operator spaces, Proc. Am. Math. Soc., 119, pp. 579-584, (1993)
[4]  
Pisier G., Grothendieck's Theorem for non-commutative C*-algebras with an appendix on Grothendieck's constants, J. Funct. Anal., 29, pp. 397-415, (1978)
[5]  
Haagerup U., Decomp. of Completely Bounded Maps
[6]  
Effros E., On Multilinear Completely Bounded Module Maps, Contemp. Math., 62, pp. 479-501, (1987)
[7]  
Effros E., Ruan Z.-J., On approximation properties for operator spaces, Int. J. Math., 1, pp. 163-187, (1990)
[8]  
Ulam S.M., A Collection of the Mathematical Problems, (1960)
[9]  
Hyers D.H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27, pp. 222-224, (1941)
[10]  
Aoki T., On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn., 2, pp. 64-66, (1950)