Robust H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty$$\end{document} filtering for uncertain discrete-time stochastic neural networks with Markovian jump and mixed time-delays

被引:0
作者
Yajun Li
Feiqi Deng
Gai Li
Like Jiao
机构
[1] Shunde Polytechnic,College of Electronics and Information Engineering
[2] South China University of Technology,College of Automation Science and Engineering
关键词
Filter design; Parameter uncertainty; Discrete-time stochastic neural networks; Markovian jumping parameter; Mixed time-delay; Linear matrix inequality (LMI);
D O I
10.1007/s13042-017-0651-2
中图分类号
学科分类号
摘要
In this paper, the robust H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty$$\end{document} filtering problem is discussed for a class of uncertain discrete-time stochastic neural networks with Markovian jumping parameters and mixed time-delays. Norm-bounded parameter uncertainties exist in both the state and measurement equation. The neuron activation function satisfies sector-bounded condition. The aim is to design a full-order filter with a prescribed H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\infty$$\end{document} performance level. Delay-segment-dependent conditions are developed in terms of linear matrix inequalities (LMIs) such that the resulted filtering error systems robustly stochastically stable. Finally, example is provided to demonstrate the effectiveness and applicability of the related results are obtained in this paper.
引用
收藏
页码:1377 / 1386
页数:9
相关论文
共 115 条
[1]  
Yang R(2010)Exponential stability on stochastic neural networks with discrete interval and distributed delays IEEE Trans Neural Netw 21 169-175
[2]  
Zhang Z(2006)Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays IEEE Trans Neural Netw 17 814-820
[3]  
Shi P(2015)Stability analysis of stochastic Markovian switching static neural networks with asynchronous mode-dependent delays Neurocomputing 151 864-872
[4]  
Wang Z(2010)State estimation for discrete Markovian jumping neural networks with time delay Neurocomputing 73 2247-2254
[5]  
Liu Y(2010)State estimation for Markovian jumping recurrent neural networks with interval time-varying delays Nonlinear Dyn 60 661-675
[6]  
Li M(2008)State estimation for discrete-time neural networks with time-varying delays Neurocomputing 72 643-647
[7]  
Liu X(2015)Robust non-fragile Neurocomputing 154 162-173
[8]  
Tan H(2008) state estimation for discrete-time genetic regulatory networks with Markov jump delays and uncertain transition probabilities Appl Math Comput 203 217-223
[9]  
Hua M(2013)State estimation for neural networks of neutral-type with interval time-varying delays Neurocomputing 111 1-12
[10]  
Chen J(2010)Robust state estimation for discrete-time stochastic genetic regulatory networks with probabilistic measurement delays Neural Netw 23 1202-1207