lk,s-Singular values and spectral radius of rectangular tensors

被引:0
作者
Chen Ling
Liqun Qi
机构
[1] Hangzhou Dianzi University,School of Science
[2] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Frontiers of Mathematics in China | 2013年 / 8卷
关键词
Nonnegative rectangular tensor; -singular value; -spectral radius; irreducibility; weak irreducibility; 15A18; 15A69; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real nonnegative partially symmetric rectangular tensors. We first introduce the concepts of lk,s-singular values/vectors of real partially symmetric rectangular tensors. Then, based upon the presented properties of lk,s-singular values /vectors, some properties of the related lk,s-spectral radius are discussed. Furthermore, we prove two analogs of Perron-Frobenius theorem and weak Perron-Frobenius theorem for real nonnegative partially symmetric rectangular tensors.
引用
收藏
页码:63 / 83
页数:20
相关论文
共 32 条
[1]  
Chang K. C.(2008)Perron Frobenius theorem for nonnegative tensors Commun Math Sci 6 507-520
[2]  
Pearson K.(2010)Singular values of a real rectangular tensor J Math Anal Appl 370 284-294
[3]  
Zhang T.(2007)A tensor product matrix approximation problem in quantum physics Linear Algebra Appl 420 711-725
[4]  
Chang K. C.(1935)Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47 777-780
[5]  
Qi L.(2013)Perron-Frobenius theorem for nonnegative multilinear forms and extensions Linear Algebra Appl 438 738-749
[6]  
Zhou G.(2004)The Perron-Frobenius theorem for homogeneous, monotone functions Trans Amer Math Soc 356 4931-4950
[7]  
Dahl D.(1975)On the ellipticity of the equations of non-linear elastostatics for a special material J Elasticity 5 341-361
[8]  
Leinass J. M.(1977)On the failure of ellipticity of the equations for finite elastostatic plane strain Arch Ration Mech Anal 63 321-336
[9]  
Myrheim J.(1948)Linear operators leaving invariant a cone in a Banach space Uspekhi Mat Nauk 3 23-122
[10]  
Ovrum E.(1986)Convexity and log convexity for the spectral radius Linear Algebra Appl 73 59-1324