C*-Algebras of Anisotropic Schrödinger Operators on Trees

被引:0
|
作者
Sylvain Golénia
机构
[1] Université de Cergy-Pontoise,Département de Mathématiques
来源
Annales Henri Poincaré | 2004年 / 5卷
关键词
Differential Operator; Mathematical Method; Compact Operator; Essential Spectrum; Unbounded Potential;
D O I
暂无
中图分类号
学科分类号
摘要
We study a C*-algebra generated by differential operators on a tree. We give a complete description of its quotient with respect to the compact operators. This allows us to compute the essential spectrum of self-adjoint operators affiliated to this algebra. The results cover Schrödinger operators with highly anisotropic, possibly unbounded potentials.
引用
收藏
页码:1097 / 1115
页数:18
相关论文
共 50 条
  • [31] On the Inverse Resonance Problem for Schrödinger Operators
    Marco Marlettta
    Roman Shterenberg
    Rudi Weikard
    Communications in Mathematical Physics, 2010, 295 : 465 - 484
  • [32] Improved energy bounds for Schrödinger operators
    Lorenzo Brasco
    Giuseppe Buttazzo
    Calculus of Variations and Partial Differential Equations, 2015, 53 : 977 - 1014
  • [33] Schrödinger Operators with δ and δ′-Potentials Supported on Hypersurfaces
    Jussi Behrndt
    Matthias Langer
    Vladimir Lotoreichik
    Annales Henri Poincaré, 2013, 14 : 385 - 423
  • [34] Spectral instability for some Schrödinger operators
    A. Aslanyan
    E.B. Davies
    Numerische Mathematik, 2000, 85 : 525 - 552
  • [35] SCATTERING FOR THE FRACTIONAL MAGNETIC SCHR?DINGER OPERATORS
    魏磊
    段志文
    Acta Mathematica Scientia, 2024, 44 (06) : 2391 - 2410
  • [36] Bounds on the density of states for Schrödinger operators
    Jean Bourgain
    Abel Klein
    Inventiones mathematicae, 2013, 194 : 41 - 72
  • [37] Nonlinear Schrödinger operators with zero in the spectrum
    Martin Schechter
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2125 - 2141
  • [38] An Agmon estimate for Schrödinger operators on graphs
    Stefan Steinerberger
    Letters in Mathematical Physics, 2023, 113
  • [39] Schrödinger Operators with Distributional Matrix Potentials
    V. N. Moliboga
    Ukrainian Mathematical Journal, 2015, 67 : 748 - 763
  • [40] Riesz Transforms of Schrödinger Operators on Manifolds
    Joyce Assaad
    El Maati Ouhabaz
    Journal of Geometric Analysis, 2012, 22 : 1108 - 1136