C*-Algebras of Anisotropic Schrödinger Operators on Trees

被引:0
|
作者
Sylvain Golénia
机构
[1] Université de Cergy-Pontoise,Département de Mathématiques
来源
Annales Henri Poincaré | 2004年 / 5卷
关键词
Differential Operator; Mathematical Method; Compact Operator; Essential Spectrum; Unbounded Potential;
D O I
暂无
中图分类号
学科分类号
摘要
We study a C*-algebra generated by differential operators on a tree. We give a complete description of its quotient with respect to the compact operators. This allows us to compute the essential spectrum of self-adjoint operators affiliated to this algebra. The results cover Schrödinger operators with highly anisotropic, possibly unbounded potentials.
引用
收藏
页码:1097 / 1115
页数:18
相关论文
共 50 条
  • [21] Schrödinger operators periodic in octants
    Evgeny Korotyaev
    Jacob Schach MØller
    Letters in Mathematical Physics, 2021, 111
  • [22] Spectral properties of Schrödinger operators on radial N-dimensional infinite trees
    Yehuda Pinchover
    Gershon Wolansky
    Daphne Zelig
    Israel Journal of Mathematics, 2008, 165
  • [23] Bilinear operators associated with generalized Schrödinger operators
    Nan Hu
    Yu Liu
    Journal of Pseudo-Differential Operators and Applications, 2019, 10 : 837 - 854
  • [24] Uniqueness for solutions of the Schrödinger equation on trees
    Aingeru Fernández-Bertolin
    Philippe Jaming
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 681 - 708
  • [25] A REPRESENTATION FORMULA RELATED TO SCHRDINGER OPERATORS
    Zheng Shijun (Louisiana State University
    Analysis in Theory and Applications, 2004, (03) : 294 - 296
  • [26] On the finiteness of the Morse index for Schrödinger operators
    Baptiste Devyver
    Manuscripta Mathematica, 2012, 139 : 249 - 271
  • [27] On Spectral Problems of Discrete Schrödinger Operators
    Chi-Hua Chan
    Po-Chun Huang
    Applications of Mathematics, 2021, 66 : 325 - 344
  • [28] Scattering for the fractional magnetic Schrödinger operators
    Wei, Lei
    Duan, Zhiwen
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (06) : 2391 - 2410
  • [29] On Minimal Eigenvalues¶of Schrödinger Operators on Manifolds
    Pedro Freitas
    Communications in Mathematical Physics, 2001, 217 : 375 - 382
  • [30] Trace Formulas for Schrödinger Operators on a Lattice
    E. L. Korotyaev
    Russian Journal of Mathematical Physics, 2022, 29 : 542 - 557