C*-Algebras of Anisotropic Schrödinger Operators on Trees

被引:0
|
作者
Sylvain Golénia
机构
[1] Université de Cergy-Pontoise,Département de Mathématiques
来源
Annales Henri Poincaré | 2004年 / 5卷
关键词
Differential Operator; Mathematical Method; Compact Operator; Essential Spectrum; Unbounded Potential;
D O I
暂无
中图分类号
学科分类号
摘要
We study a C*-algebra generated by differential operators on a tree. We give a complete description of its quotient with respect to the compact operators. This allows us to compute the essential spectrum of self-adjoint operators affiliated to this algebra. The results cover Schrödinger operators with highly anisotropic, possibly unbounded potentials.
引用
收藏
页码:1097 / 1115
页数:18
相关论文
共 50 条
  • [1] C*-algebras of anisotropic Schrodinger operators on trees
    Golénia, S
    ANNALES HENRI POINCARE, 2004, 5 (06): : 1097 - 1115
  • [2] On the Essential Spectrum of Schrödinger Operators on Trees
    Jonathan Breuer
    Sergey Denisov
    Latif Eliaz
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [3] Propagation Properties for Schrödinger Operators Affiliated with Certain C*-Algebras
    W. O. Amrein
    M. Mantoiu
    R. Purice
    Annales Henri Poincaré, 2002, 3 : 1215 - 1232
  • [4] Dispersion for Schrödinger operators on regular trees
    Kaïs Ammari
    Mostafa Sabri
    Analysis and Mathematical Physics, 2022, 12
  • [5] Sigma Functions and Lie Algebras of Schrödinger Operators
    V. M. Buchstaber
    E. Yu. Bunkova
    Functional Analysis and Its Applications, 2020, 54 : 229 - 240
  • [6] Inverse Problems for Magnetic Schrödinger Operators in Transversally Anisotropic Geometries
    Katya Krupchyk
    Gunther Uhlmann
    Communications in Mathematical Physics, 2018, 361 : 525 - 582
  • [7] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [8] Pseudomodes of Schrödinger operators
    Krejcirik, David
    Siegl, Petr
    FRONTIERS IN PHYSICS, 2024, 12
  • [9] Concentration of Eigenfunctions of Schrödinger Operators
    Boris Mityagin
    Petr Siegl
    Joe Viola
    Journal of Fourier Analysis and Applications, 2022, 28
  • [10] Regularity for Eigenfunctions of Schrödinger Operators
    Bernd Ammann
    Catarina Carvalho
    Victor Nistor
    Letters in Mathematical Physics, 2012, 101 : 49 - 84