Quasidiagonality of C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-Algebras of Solvable Lie Groups

被引:0
作者
Ingrid Beltiţă
Daniel Beltiţă
机构
[1] Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
关键词
Unitary dual; -Group; Solvable Lie group; Quasidiagonal ; -algebra; Primary 22D25; Secondary 22E27;
D O I
10.1007/s00020-018-2438-6
中图分类号
学科分类号
摘要
We characterize the solvable Lie groups of the form Rm⋊R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^m\rtimes {\mathbb {R}}$$\end{document}, whose C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras are quasidiagonal. Using this result, we determine the connected simply connected solvable Lie groups of type I whose C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras are strongly quasidiagonal. As a by-product, we give also examples of amenable Lie groups with non-quasidiagonal C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras.
引用
收藏
相关论文
共 23 条
[1]  
Abdelmoula L(2004)Separation of unitary representations of J. Lie Theory 14 427-441
[2]  
Arnal D(2015)The Can. J. Math. 67 481-506
[3]  
Selmi M(2016)-algebras of compact transformation groups J. Math. Anal. Appl. 437 51-58
[4]  
Archbold RJ(2017)On Int. Math. Res. Not. IMRN 3 677-714
[5]  
an Huef A(1987)-algebras of exponential solvable Lie groups and their real ranks J. Oper. Theory 18 3-18
[6]  
Beltiţă I(1973)Fourier transforms of Differencialnye Uravnenija 9 1222-1235
[7]  
Beltiţă D(2013)-algebras of nilpotent Lie groups Bull. Lond. Math. Soc. 45 257-267
[8]  
Beltiţă I(1999)Strongly quasidiagonal Ergod. Theory Dyn. Syst. 19 723-740
[9]  
Beltiţă D(1976)-algebras. With an appendix by Jonathan Rosenberg Pac. J. Math. 65 175-192
[10]  
Ludwig J(2001)Topological equivalence of linear flows (Russian) Proc. Am. Math. Soc. 129 609-616