Gauge symmetry enhancing-breaking from a Double Field Theory perspective

被引:0
作者
G. Aldazabal
E. Andrés
Martín Mayo
J. A. Rosabal
机构
[1] G. Física CAB-CNEA and CONICET,
[2] Centro Atómico Bariloche,undefined
[3] Instituto Balseiro,undefined
[4] Centro Atómico Bariloche,undefined
[5] B.W. Lee Center for Fields,undefined
[6] Gravity & Strings,undefined
[7] Institute for Basic Sciences,undefined
来源
Journal of High Energy Physics | / 2017卷
关键词
Bosonic Strings; Flux compactifications; String Duality;
D O I
暂无
中图分类号
学科分类号
摘要
Gauge symmetry enhancing, at specific points of the compactification space, is a distinguished feature of string theory. In this work we discuss the breaking of such symmetries with tools provided by Double Field Theory (DFT). As a main guiding example we discuss the bosonic string compactified on a circle where, at the self-dual radio the generic U(1) × U(1) gauge symmetry becomes enhanced to SU(2) × SU(2). We show that the enhancing-breaking of the gauge symmetry can be understood through a dependence of gauge structure constants (fluxes in DFT) on moduli. This dependence, in DFT description, is encoded in the generalized tangent frame of the double space. The explicit T-duality invariant formulation provided by DFT proves to be a helpful ingredient. The link with string theory results is discussed and generalizations to generic tori compactifications are addressed.
引用
收藏
相关论文
共 96 条
  • [1] Narain KS(1986) < 10 Phys. Lett. B 169 41-undefined
  • [2] Giveon A(1994)Target space duality in string theory Phys. Rept. 244 77-undefined
  • [3] Porrati M(2016)Enhanced gauge symmetry and winding modes in Double Field Theory JHEP 03 093-undefined
  • [4] Rabinovici E(2013)Double Field Theory: a pedagogical review Class. Quant. Grav. 30 163001-undefined
  • [5] Aldazabal G(2011) = 4 JHEP 11 116-undefined
  • [6] Graña M(2013)Exploring Double Field Theory JHEP 06 101-undefined
  • [7] Iguri S(2009)T-duality, generalized geometry and non-geometric backgrounds JHEP 04 075-undefined
  • [8] Mayo M(2011)Supergravity as generalised geometry I: type II theories JHEP 11 091-undefined
  • [9] Núñez C(2009)Double Field Theory JHEP 09 099-undefined
  • [10] Rosabal JA(2010)Background independent action for Double Field Theory JHEP 07 016-undefined