Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus

被引:0
|
作者
B. L. Read-Daily
F. Sabba
J. P. Pavissich
R. Nerenberg
机构
[1] Elizabethtown College,Department of Engineering and Physics
[2] University of Notre Dame,Department of Civil Engineering and Environmental Engineering and Earth Sciences
[3] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
来源
AMB Express | / 6卷
关键词
Nitrous oxide; Denitrification; Maximum specific reduction rates; Kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
Nitrous oxide (N2O) is a powerful greenhouse gas emitted from wastewater treatment, as well as natural systems, as a result of biological nitrification and denitrification. While denitrifying bacteria can be a significant source of N2O, they can also reduce N2O to N2. More information on the kinetics of N2O formation and reduction by denitrifying bacteria is needed to predict and quantify their impact on N2O emissions. In this study, kinetic parameters were determined for Paracoccus pantotrophus, a common denitrifying bacterium. Parameters included the maximum specific reduction rates, q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document}, growth rates, μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document}, and yields, Y, for reduction of NO3− (nitrate) to nitrite (NO2−), NO2− to N2O, and N2O to N2, with acetate as the electron donor. The q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document} values were 2.9 gN gCOD−1 d−1 for NO3− to NO2−, 1.4 gN gCOD−1 d−1 for NO2− to N2O, and 5.3 gN gCOD−1 d−1 for N2O to N2. The μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document} values were 2.7, 0.93, and 1.5 d−1, respectively. When N2O and NO3− were added concurrently, the apparent (extant) kinetics, q^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}_{\text{app}}$$\end{document}, assuming reduction to N2, were 6.3 gCOD gCOD−1 d−1, compared to 5.4 gCOD gCOD−1 d−1 for NO3− as the sole added acceptor. The μ^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}_{\text{app}}$$\end{document} was 1.6 d−1, compared to 2.5 d−1 for NO3− alone. These results suggest that NO3− and N2O were reduced concurrently. Based on this research, denitrifying bacteria like P. pantotrophus may serve as a significant sink for N2O. With careful design and operation, treatment plants can use denitrifying bacteria to minimize N2O emissions.
引用
收藏
相关论文
共 50 条
  • [11] Role of N2O and equivalence ratio on NOx formation of methane/nitrous oxide premixed flames
    Chen, Chun-Han
    Li, Yueh-Heng
    COMBUSTION AND FLAME, 2021, 223 : 42 - 54
  • [12] Multiple forms of the catalytic centre, Cuz, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus
    Rasmussen, T
    Berks, BC
    Butt, JN
    Thomson, AJ
    BIOCHEMICAL JOURNAL, 2002, 364 : 807 - 815
  • [13] Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes
    Schalk-Otte, S
    Seviour, RJ
    Kuenen, JG
    Jetten, MSM
    WATER RESEARCH, 2000, 34 (07) : 2080 - 2088
  • [14] Inhibition by free nitrous acid (FNA) and the electron competition of nitrite in nitrous oxide (N2O) reduction during hydrogenotrophic denitrification
    Wang, Yajiao
    Li, Peng
    Zuo, Jiane
    Gong, Yutao
    Wang, Sike
    Shi, Xuchuan
    Zhang, Mengyu
    CHEMOSPHERE, 2018, 213 : 1 - 10
  • [15] Nitrous oxide (N2O) emissions from soils in warm climates
    Granli, T
    Bockman, OC
    FERTILIZER RESEARCH, 1995, 42 (1-3): : 159 - 163
  • [16] ANTHROPOGENIC EMISSIONS OF NITROUS-OXIDE (N2O) FROM EUROPE
    KROEZE, C
    SCIENCE OF THE TOTAL ENVIRONMENT, 1994, 152 (03) : 189 - 205
  • [17] Nitrous oxide (N2O) in the Seine river and basin: Observations and budgets
    Garnier, Josette
    Billen, Gilles
    Vilain, Guillaume
    Martinez, Anun
    Silvestre, Marie
    Mounier, Emmanuelle
    Toche, Florent
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2009, 133 (3-4) : 223 - 233
  • [18] Review of Nitrous Oxide (N2O) Emissions from Motor Vehicles
    Hoekman, S. Kent
    SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS, 2020, 13 (01) : 79 - 98
  • [19] High Production of Nitrous Oxide (N2O) via Acidic Denitrification
    Zuo, Zhiqiang
    Zhang, Tianyi
    Cen, Xiaotong
    Lu, Xi
    Liu, Tao
    Zheng, Min
    ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2025, 12 (04): : 425 - 431
  • [20] Influences of O2 concentration on NO reduction and N2O formation in thermal deNOx process
    Zhi-min, Lu
    Ji-dong, Lu
    COMBUSTION AND FLAME, 2009, 156 (06) : 1303 - 1315