Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus

被引:0
|
作者
B. L. Read-Daily
F. Sabba
J. P. Pavissich
R. Nerenberg
机构
[1] Elizabethtown College,Department of Engineering and Physics
[2] University of Notre Dame,Department of Civil Engineering and Environmental Engineering and Earth Sciences
[3] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
来源
AMB Express | / 6卷
关键词
Nitrous oxide; Denitrification; Maximum specific reduction rates; Kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
Nitrous oxide (N2O) is a powerful greenhouse gas emitted from wastewater treatment, as well as natural systems, as a result of biological nitrification and denitrification. While denitrifying bacteria can be a significant source of N2O, they can also reduce N2O to N2. More information on the kinetics of N2O formation and reduction by denitrifying bacteria is needed to predict and quantify their impact on N2O emissions. In this study, kinetic parameters were determined for Paracoccus pantotrophus, a common denitrifying bacterium. Parameters included the maximum specific reduction rates, q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document}, growth rates, μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document}, and yields, Y, for reduction of NO3− (nitrate) to nitrite (NO2−), NO2− to N2O, and N2O to N2, with acetate as the electron donor. The q^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}$$\end{document} values were 2.9 gN gCOD−1 d−1 for NO3− to NO2−, 1.4 gN gCOD−1 d−1 for NO2− to N2O, and 5.3 gN gCOD−1 d−1 for N2O to N2. The μ^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}$$\end{document} values were 2.7, 0.93, and 1.5 d−1, respectively. When N2O and NO3− were added concurrently, the apparent (extant) kinetics, q^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{q}_{\text{app}}$$\end{document}, assuming reduction to N2, were 6.3 gCOD gCOD−1 d−1, compared to 5.4 gCOD gCOD−1 d−1 for NO3− as the sole added acceptor. The μ^app\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{\upmu }}_{\text{app}}$$\end{document} was 1.6 d−1, compared to 2.5 d−1 for NO3− alone. These results suggest that NO3− and N2O were reduced concurrently. Based on this research, denitrifying bacteria like P. pantotrophus may serve as a significant sink for N2O. With careful design and operation, treatment plants can use denitrifying bacteria to minimize N2O emissions.
引用
收藏
相关论文
共 50 条
  • [1] Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus
    Read-Daily, B. L.
    Sabba, F.
    Pavissich, J. P.
    Nerenberg, R.
    AMB EXPRESS, 2016, 6
  • [2] Mechanisms of nitrous oxide (N2O) formation and reduction in denitrifying biofilms
    Sabba, Fabrizio
    Picioreanu, Cristian
    Nerenberg, Robert
    BIOTECHNOLOGY AND BIOENGINEERING, 2017, 114 (12) : 2753 - 2761
  • [3] nosX is essential for whole-cell N2O reduction in Paracoccus denitrificans but not for assembly of copper centres of nitrous oxide reductase
    Bennett, Sophie P.
    Torres, Maria J.
    Soriano-Laguna, Manuel J.
    Richardson, David J.
    Gates, Andrew J.
    Le Brun, Nick E.
    MICROBIOLOGY-SGM, 2020, 166 (10): : 909 - 917
  • [4] Biochar as electron donor for reduction of N2O by Paracoccus denitrificans
    Blanca Pascual, M.
    Angel Sanchez-Monedero, Miguel
    Cayuela, Maria L.
    Li, Shun
    Haderlein, Stefan B.
    Ruser, Reiner
    Kappler, Andreas
    FEMS MICROBIOLOGY ECOLOGY, 2020, 96 (08)
  • [5] Effect of nitrous oxide (N2O) on the structure and function of nitrogen-oxide reducing microbial communities
    Read-Daily, B.
    Maamar, S. Ben
    Sabba, F.
    Green, S.
    Nerenberg, R.
    CHEMOSPHERE, 2022, 307
  • [6] Extended THz measurements of nitrous oxide, N2O
    Drouin, BJ
    Maiwald, FW
    JOURNAL OF MOLECULAR SPECTROSCOPY, 2006, 236 (02) : 260 - 262
  • [7] Nitrous oxide (N2O) emissions from vehicles
    Becker, KH
    Jensen, T
    Kurtenbach, R
    Lörzer, JC
    Wallington, TJ
    Wiesen, P
    NON-CO2 GREENHOUSE GASES: SCIENTIFIC UNDERSTANDING, CONTROL AND IMPLEMENTATION, 2000, : 195 - 198
  • [8] High Resolution Measurements of Nitrous Oxide (N2O) in the Elbe Estuary
    Brase, Lisa
    Bange, Hermann W.
    Lendt, Ralf
    Sanders, Tina
    Daehnke, Kirstin
    FRONTIERS IN MARINE SCIENCE, 2017, 4
  • [9] A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica
    Dell'Acqua, Simone
    Pauleta, Sofia R.
    Paes de Sousa, Patricia M.
    Monzani, Enrico
    Casella, Luigi
    Moura, Jose J. G.
    Moura, Isabel
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2010, 15 (06): : 967 - 976
  • [10] Tidal and spatial variability of nitrous oxide (N2O) in Sado estuary (Portugal)
    Goncalves, Celia
    Brogueira, Maria Jose
    Nogueira, Marta
    ESTUARINE COASTAL AND SHELF SCIENCE, 2015, 167 : 466 - 474