Equivariant Burnside groups and toric varieties

被引:0
作者
Andrew Kresch
Yuri Tschinkel
机构
[1] Universität Zürich,Institut für Mathematik
[2] Courant Institute,undefined
[3] Simons Foundation,undefined
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2023年 / 72卷
关键词
Equivariant birational geometry; Toric varieties; De Concini-Procesi models;
D O I
暂无
中图分类号
学科分类号
摘要
We study G-equivariant birational geometry of toric varieties, where G is a finite group.
引用
收藏
页码:3013 / 3039
页数:26
相关论文
共 49 条
  • [1] Batyrev VV(1991)On the classification of smooth projective toric varieties Tohoku Math. J. Sec. Ser. 43 569-585
  • [2] Bogomolov F(2013)On stable conjugacy of finite subgroups of the plane Cremona group I Cent. Eur. J. Math. 11 2099-2105
  • [3] Prokhorov Yu(2020)Orlik-Solomon type presentations for the cohomology algebra of toric arrangements Trans. Am. Math. Soc. 373 1909-1940
  • [4] Callegaro F(2005)Compactification équivariante d’un tore (d’après Brylinski et Künnemann) Expos. Math. 23 161-170
  • [5] D’Adderio M(1977)La Ann. Sci. lÉcole Norm. Super. 10 175-229
  • [6] Delucchi E(2018)-équivalence sur les tores Adv. Math. 327 390-409
  • [7] Migliorini L(2019)Projective wonderful models for toric arrangements Algebr. Geom. Topol. 19 503-532
  • [8] Pagaria R(2020)Cohomology rings of compactifications of toric arrangements Eur. J. Math. 6 790-816
  • [9] Colliot-Thélène J-L(1995)On projective wonderful models for toric arrangements and their cohomology Sel. Math. 1 459-494
  • [10] Harari D(2005)Wonderful models of subspace arrangements Transform. Groups 10 387-422