Lp-theory for second-order elliptic operators with unbounded coefficients in an endpoint class

被引:0
作者
Motohiro Sobajima
机构
[1] Università del Salento,Dipartimento di Matematica “Ennio De Giorgi”
来源
Journal of Evolution Equations | 2014年 / 14卷
关键词
Primary 35J15; Secondary 47D06; Second-order elliptic operators; unbounded coefficients; -generalization of Kato’s self-adjointness problem; -Accretive operators in ; -Sectorial operators in ;
D O I
暂无
中图分类号
学科分类号
摘要
The m-accretivity and m-sectoriality of the minimal and maximal realizations of second-order elliptic operators of the form Au=-div(a∇u)+F·∇u+Vu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Au=-{\rm div}(a \nabla u)+F\cdot \nabla u +Vu}$$\end{document} in Lp(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^p(\mathbb{R}^N)}$$\end{document} are shown, where the coefficients a, F and V are unbounded. The result may be regarded as an endpoint assertion of the previous result in Sobajima (J Evol Equ 12:957–971, 2012) and an improvement of that in Metafune et al. (Forum Math 22:583–601, 2010). Moreover, an Lp-generalization of Kato’s self-adjoint problem in Kato (1981, Appendix 2) is discussed. The proof is based on Sobajima (J Evol Equ 12:957–971, 2012). As examples, the operators -Δ±|x|β-1x·∇+c|x|γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\Delta \pm |x|^{\beta-1}x \cdot \nabla +c|x|^{\gamma}}$$\end{document} are also dealt with, which are mentioned in Metafune et al. (Forum Math 22:583–601, 2010).
引用
收藏
页码:461 / 475
页数:14
相关论文
共 20 条
[1]  
Agmon S.(1959)The Ann. Scuola Norm. Sup. Pisa III 13 405-448
[2]  
Arendt W.(2006) approach to the Dirichlet problem, I: Regularity theorems J. Operator Theory 55 185-211
[3]  
Metafune G.(1985)Schrödinger operators with unbounded drift Bull. London Math. Soc. 17 417-436
[4]  
Pallara D.(2005) properties of second order elliptic operators Z. Anal. Anwendungen 24 497-521
[5]  
Davies E.B.(2010)-theory for elliptic operators on $${\mathbb{R}^{d}}$$ R d with singular coefficients Forum Math. 22 583-601
[6]  
Metafune G.(1984)Uniqueness for elliptic operators on $${L^{p}(\mathbb{R}^{N})}$$ L p ( R N ) with unbounded coefficients J. Math. Soc. Japan 36 675-688
[7]  
Pallara D.(1991)An Proc. Amer. Math. Soc. 113 701-706
[8]  
Prüss J.(1996) theory for Schrödinger operators with nonnegative potentials Japan. J. Math. 22 199-239
[9]  
Schnaubelt R.(1977)Sectorialness of second order elliptic operators in divergence form Comm. Math. Phys. 53 277-284
[10]  
Metafune G.(1973)-theory of Schrödinger operators with strongly singular potentials Math. Ann. 201 211-220