Picard Theorem for Holomorphic Curves from a Punctured Disc into Pn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^n({\mathbb {C}})$$\end{document} with Few Hypersurfaces in Subgeneral Position

被引:0
作者
Huong Giang Ha
Thi Huyen Hoang
机构
[1] Electric Power University,Faculty of Sciences
[2] Hanoi National University of Education,Department of Mathematics
关键词
Big Picard; Extension; Meromorphic mapping; Hypersurface; 32H30; 32A22; 30D35;
D O I
10.1007/s41980-020-00483-6
中图分类号
学科分类号
摘要
In this paper, we will prove a big Picard’s theorem for holomorphic curves from a punctured disc into Pn(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^n({\mathbb {C}})$$\end{document} with q(q>(N-n+1)(n+1))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \ (q>(N-n+1)(n+1))$$\end{document} hypersurfaces which are located in N-subgeneral position.
引用
收藏
页码:1989 / 2004
页数:15
相关论文
共 24 条
[1]  
Aladro G(1991)A criterion for normality in J. Math. Anal. App. 161 1-8
[2]  
Krantz SG(2009)An explicit estimate on multiplicity truncation in the second main theorem for holomorphic curves encountering hypersurfaces in general position in projective space Houston J. Math. 35 775-786
[3]  
An TTH(2013)The second main theorem for meromorphic mappings into a complex projective space Acta Math. Vietnam. 38 187-205
[4]  
Phuong HT(1972)Extensions of the big Picard’s theorem Tohoku. Math. J. 24 415-422
[5]  
An DP(1997)Extension and convergence theorems for families of normal maps in several complex variables Proc. Am. Math. Soc. 125 1675-1684
[6]  
Quang SD(1981)Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties Nagoya Math. J. 83 213-233
[7]  
Thai DD(2002)Holomorphic curves and integral points off divisors Math. Z. 239 593-610
[8]  
Fujimoto H(2012)Extension of holomorphic mappings for few moving hypersurfaces Ukrain. Math. J. 64 441-455
[9]  
Joseph J(2019)Degeneracy second main theorems for meromorphic mappings into projective varieties with hypersurfaces Tran. Am. Math. Soci. 371 2431-2453
[10]  
Kwack MH(2015)Big Picard theorem for meromorphic mappings with moving hyperplanes in Ukrain. Math. J. 66 1485-1497