Stability analysis of a whirling rigid rotor supported by stationary grooved FDBs considering the five degrees of freedom of a general rotor-bearing system

被引:0
作者
Minho Lee
Jihoon Lee
Gunhee Jang
机构
[1] Hanyang University,PREM, Department of Mechanical Convergence Engineering
来源
Microsystem Technologies | 2015年 / 21卷
关键词
Journal Bearing; Unstable Region; Thrust Bearing; Dynamic Coefficient; Whirling Motion;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a method to determine the stability of a whirling rotor supported by stationary grooved fluid dynamic bearings (FDBs), considering the five degrees of freedom of a general rotor-bearing system. Dynamic coefficients are calculated by using the finite element method and the perturbation method, and they are represented as periodic harmonic functions. Because of the periodic time-varying dynamic coefficients, the equations of motion of the rotor supported by FDBs can be represented as a parametrically excited system. The solution of the equations of motion can be assumed to be a Fourier series, allowing the equations of motion to be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Hill’s infinite determinant is calculated by using these algebraic equations to determine the stability. Increasing rotational speed increases Kxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{xx}$$\end{document} and Kθxθx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{{\theta_{x} \theta_{x} }}$$\end{document}, which decreases the stability of the stationary grooved FDBs; increasing whirl radius increases the stability of the FDBs because the resulting increases in the averages and variations of Cxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{xx}$$\end{document} and Cθxθx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{{\theta_{x} \theta_{x} }}$$\end{document} increase the stability faster than the corresponding increases of Kxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{xx}$$\end{document} and Kθxθx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{{\theta_{x} \theta_{x} }}$$\end{document} decrease the stability. The proposed method was verified by investigating the convergence and divergence of the whirl radius after the equations of motion were solved using the fourth-order Runge–Kutta method.
引用
收藏
页码:2685 / 2696
页数:11
相关论文
共 18 条
  • [1] Chen SK(2012)Stability of hydrodynamic bearing with herringbone grooved sleeve Tribol Int 55 15-28
  • [2] Chou HC(1999)Calculation of dynamic coefficients in a hydrodynamic bearing considering five degrees of freedom for a general rotor-bearing system J Tribol 121 499-505
  • [3] Kang Y(2006)Determination of the dynamic coefficients of the coupled journal and thrust bearings by the perturbation method Tribol Lett 22 239-246
  • [4] Jang GH(2000)Effect of fluid inertia on stability of oil journal bearings J Tribol 122 741-745
  • [5] Kim YJ(2010)Stability analysis of a disk-spindle system supported by coupled journal and thrust bearings considering five degrees of freedom Tribol Int 43 1479-1490
  • [6] Jang GH(2011)Stability analysis of a whirling disk-spindle system supported by FDBs with rotating grooves Microsyst Technol 17 787-797
  • [7] Lee SH(2003)Stability analysis of a hydrodynamic journal bearing with rotating herringbone grooves J Tribol 125 291-300
  • [8] Kakoty SK(undefined)undefined undefined undefined undefined-undefined
  • [9] Majumdar BC(undefined)undefined undefined undefined undefined-undefined
  • [10] Kim MG(undefined)undefined undefined undefined undefined-undefined