The Second Law of Thermodynamics at the Microscopic Scale

被引:0
作者
Thibaut Josset
机构
[1] Aix Marseille Univ,
[2] Université de Toulon,undefined
[3] CNRS,undefined
[4] CPT,undefined
来源
Foundations of Physics | 2017年 / 47卷
关键词
Second law of thermodynamics; Quantum typicality; von Neumann entropy; Isolated systems;
D O I
暂无
中图分类号
学科分类号
摘要
In quantum statistical mechanics, equilibrium states have been shown to be the typical states for a system that is entangled with its environment, suggesting a possible identification between thermodynamic and von Neumann entropies. In this paper, we investigate how the relaxation toward equilibrium is made possible through interactions that do not lead to significant exchange of energy, and argue for the validity of the second law of thermodynamics at the microscopic scale.
引用
收藏
页码:1185 / 1190
页数:5
相关论文
共 26 条
[1]  
Popescu S(2006)Entanglement and the foundations of statistical mechanics Nat. Phys. 2 754-4459
[2]  
Short AJ(1998)From quantum dynamics to canonical distribution: general picture and a rigorous example Phys. Rev. Lett. 80 1373-undefined
[3]  
Winter A(2003)Distribution of local entropy in the Hilbert space of bi-partite quantum systems: origin of Jayne’s principle Eur. Phys. J. B 31 249-undefined
[4]  
Tasaki H(2006)Canonical typicality Phys. Rev. Lett. 96 050403-undefined
[5]  
Gemmer J(2009)Dynamical typicality of quantum expectation values Phys. Rev. Lett. 102 110403-undefined
[6]  
Mahler G(2014)Work extraction and thermodynamics for individual quantum systems Nat. Commun. 5 4185-undefined
[7]  
Goldstein S(2001)Entanglement and the factorization-approximation Eur. Phys. J. D 17 385-undefined
[8]  
Lebowitz JL(1995)Evolution laws taking pure states to mixed states in quantum field theory Phys. Rev. D 52 2176-undefined
[9]  
Tumulka R(2012)Decoherence without dissipation Phil. Trans. R. Soc. A 370 4454-undefined
[10]  
Zanghì N(2015)No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox Class. Quantum Grav. 32 084001-undefined