A direct proof of Müller’s result on automorphisms of finite p-groups

被引:0
作者
Mandeep Singh
Rohit Garg
机构
[1] Arya College,Department of Mathematics
[2] Govt. Ripudaman College,Department of Mathematics
来源
Archiv der Mathematik | 2022年 / 119卷
关键词
Finite ; -group; Frattini subgroup; Inner automorphism; Primary 20D45; Secondary 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
Müller proved that, if G is a finite p-group which is neither elementary abelian nor extra-special, then AutΦ(G)/Inn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Aut}\,}}^{\Phi }(G) / {{\,\mathrm{Inn}\,}}(G)$$\end{document} is a non-trivial normal p-subgroup of the group of outer automorphisms of G. Here AutΦ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Aut}\,}}^{\Phi }(G)$$\end{document} denotes the group of all automorphisms of G that centralize the Frattini quotient G/Φ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G/\Phi (G)$$\end{document} of G. We give a new direct proof, which avoids, in particular, the use of cohomological considerations.
引用
收藏
页码:563 / 567
页数:4
相关论文
共 6 条
[1]  
Alperin JL(1962)Groups with finitely many automorphisms Pac. J. Math. 12 1-5
[2]  
Curran MJ(2001)Central automorphisms that are almost inner Comm. Algebra 29 2081-2087
[3]  
McCaughan DJ(1965)Kohomologische Trivialitäten und äußere Automorphismen von Math. Z. 88 432-433
[4]  
Gaschütz W(1979)-Gruppen Arch. Math. (Basel) 32 533-538
[5]  
Müller O(1976)On Math. Z. 147 271-277
[6]  
Schmid P(undefined)-automorphisms of finite undefined undefined undefined-undefined