M- and Mint\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}_{\text {int}}$$\end{document}-integrals for cracks normal to the interface of anisotropic bimaterials

被引:0
作者
J. H. Chang
B. S. Jeng
机构
[1] National Central University,Department of Civil Engineering
关键词
Crack normal to bimaterial interface; M-integral; -integral; Path-independence; Origin-dependence; Released potential energy;
D O I
10.1007/s10704-015-0060-z
中图分类号
学科分类号
摘要
A contour integral termed Mint\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}_{\mathrm{int}}$$\end{document} is presented for describing the fracture behavior of cracks passing through or terminating normally at a bimaterial interface. The Mint\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}_{\mathrm{int}}$$\end{document}-integral is defined by performing the conventional M-integral along a contour enclosing the cracks, with the coordinate system properly originated for measure of the integration points. The presented formulation is considered to be feasible for problems with generally anisotropic elastic materials. Physically, the energy parameter Mint\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}_{\mathrm{int}}$$\end{document} is shown to be equivalent to twice the released potential energy required for creation of the cracks. Such relation is exactly valid when the crack length is small compared with the size of the specimen, and approximately satisfied for problems containing relatively large cracks. Also, due to path-independence, the Mint\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}_{\mathrm{int}}$$\end{document}-integral can be performed along an arbitrary outer contour, which is chosen to be far from the crack tips. With this property, the complicated singular stress field in the near-tip areas can be avoided so that a complicated finite element model around the crack tips is not required in the calculation.
引用
收藏
页码:49 / 61
页数:12
相关论文
共 37 条
  • [1] Abdi R(1989)Isoparametric elements for a crack normal to the interface between two bonded layers Comp Struct 33 241-248
  • [2] Valentin G(1971)On the plane elastostatic problem of a loaded crack terminating at a material interface J Appl Mech 38 911-918
  • [3] Bogy DB(2003)Calculation of mixed-mode stress intensity factors for a crack normal to a bimaterial Interface using contour integrals Eng Fract Mech 70 1675-1695
  • [4] Chang JH(1988)On the applicability of Eng Fract Mech 30 13-19
  • [5] Wu DJ(2001) integral for perpendicular interface crack Int J Sol Struct 38 3193-3212
  • [6] Chen WH(2003)M-integral analysis for two-dimensional solids with strongly interacting microcracks. Part I: in an infinite brittle solid Appl Mech Rev 56 515-552
  • [7] Chen KT(1987)Recent developments and applications of invariant integrals J Appl Mech 54 388-392
  • [8] Chiang CR(1981)Energy release rates and related balance laws in linear elastic defect mechanics J Appl Mech 48 525-528
  • [9] Chen YH(2006)On energy release rates for a plane crack Ser Comp Mat Sci 35 53-60
  • [10] Chen YH(1972)Finite element analysis of crack perpendicular to bi-material interface: case of couple ceramic–metal Arch Ration Mech Anal 44 187-343