Hille and Nehari-Type Oscillation Criteria for Third-Order Emden–Fowler Neutral Delay Dynamic Equations

被引:0
作者
Yizhuo Wang
Zhenlai Han
Shurong Sun
Ping Zhao
机构
[1] University of Jinan,School of Mathematical Sciences
[2] University of Jinan,School of Control Science and Engineering
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2017年 / 40卷
关键词
Oscillation; Third-order; Neutral dynamic equations; Time scales; 34K11; 34N05;
D O I
暂无
中图分类号
学科分类号
摘要
We establish some oscillation criteria for the third-order Emden–Fowler neutral delay dynamic equations of the form: (a(t)(x(t)+r(t)x(τ(t)))ΔΔ)Δ+p(t)xγ(δ(t))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (a(t)(x(t)+r(t)x(\tau (t)))^{\Delta \Delta })^\Delta +p(t)x^\gamma (\delta (t))=0 \end{aligned}$$\end{document}on a time scale T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}, where γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma >0$$\end{document} is a quotient of odd positive integers, and a and p are real-valued positive rd-continuous functions defined on T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. Due to the different values of γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}, we give not only the oscillation criteria for superlinear neutral delay dynamic equations, but also the oscillation criteria for sublinear neutral delay dynamic equations based on the Hille and Nehari-type oscillation criteria. Our results extend and improve some known results in the literature and are new even for the corresponding third-order differential equations and difference equations as our special cases.
引用
收藏
页码:1187 / 1217
页数:30
相关论文
共 56 条
  • [1] Hilger S(1990)Analysis on measure chains a unified approach to continuous and discrete calculus Results Math. 18 18-56
  • [2] Wong JSW(1975)On the generalized Emden–Fowler equation SIAM Rev. 17 339-360
  • [3] Agarwal RP(2005)Oscillation of second order delay dynamic equations Can. Appl. Math. Q. 13 1-17
  • [4] Bohner M(2009)An oscillation criterion for first order delay dynamic equations Funct. Differ. Equ. 16 11-17
  • [5] Saker SH(2004)Oscillation of second order nonlinear dynamic equations on time scales Rocky Mt. J. Math. 34 1239-1254
  • [6] Agarwal RP(2005)Oscillation of second-order nonlinear delay dynamic equations on time scales Comput. Math. Appl. 49 599-609
  • [7] Bohner M(2007)Oscillation criteria for second-order nonlinear delay dynamic equations J. Math. Anal. Appl. 333 505-522
  • [8] Bohner M(2008)Oscillation criteria for half-linear dynamic equations on time scales J. Math. Anal. Appl. 345 176-185
  • [9] Saker SH(2010)Oscillation criteria for third order nonlinear delay dynamic equations on time scales Ann. Pol. Math. 99 143-156
  • [10] Zhang BG(2012)On the oscillation of third order neutral delay dynamic equations on time scales Comput. Math. Appl. 63 775-782