Vertex Degrees of Steiner Minimal Trees in ℓpd and Other Smooth Minkowski Spaces

被引:0
作者
K. J. Swanepoel
机构
[1] Department of Mathematics and Applied Mathematics,
[2] University of Pretoria,undefined
[3] 0002 Pretoria,undefined
[4] South Africa konrad@math.up.ac.za,undefined
来源
Discrete & Computational Geometry | 1999年 / 21卷
关键词
Banach Space; Span Tree; Maximum Degree; Minkowski Space; Minimal Span Tree;
D O I
暂无
中图分类号
学科分类号
摘要
We find upper bounds for the degrees of vertices and Steiner points in Steiner Minimal Trees (SMTs) in the d -dimensional Banach spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \ell$ \end{document}pd independent of d . This is in contrast to Minimal Spanning Trees, where the maximum degree of vertices grows exponentially in d [19]. Our upper bounds follow from characterizations of singularities of SMTs due to Lawlor and Morgan [14], which we extend, and certain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \ell$ \end{document}p -inequalities. We derive a general upper bound of d+1 for the degree of vertices of an SMT in an arbitrary smooth d -dimensional Banach space (i.e. Minkowski space); the same upper bound for Steiner points having been found by Lawlor and Morgan. We obtain a second upper bound for the degrees of vertices in terms of 1 -summing norms.
引用
收藏
页码:437 / 447
页数:10
相关论文
empty
未找到相关数据