On the global well-posedness of the quadratic NLS on H1(T)+L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1({{\mathbb {T}}}) + L^2({{\mathbb {R}}})$$\end{document}

被引:0
作者
L. Chaichenets
D. Hundertmark
P. Kunstmann
N. Pattakos
机构
[1] Karlsruhe Institute of Technology,Department of Mathematics, Institute for Analysis
[2] Technical University of Dresden,undefined
[3] Institute of Analysis,undefined
关键词
Nonlinear Schrödinger equation; Local well-posedness; Global well-posedness; Gronwall’s inequality; Strichartz estimates; 35A01; 35A02; 35Q55;
D O I
10.1007/s00030-020-00670-8
中图分类号
学科分类号
摘要
We study the one dimensional nonlinear Schrödinger equation with power nonlinearity uα-1u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| u \right| ^{\alpha - 1} u$$\end{document} for α∈[1,5]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [1,5]$$\end{document} and initial data u0∈H1(T)+L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_0 \in H^1({{\mathbb {T}}}) + L^2({{\mathbb {R}}})$$\end{document}. We show via Strichartz estimates that the Cauchy problem is locally well-posed. In the case of the quadratic nonlinearity (α=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = 2$$\end{document}) we obtain global well-posedness in the space C(R,H1(T)+L2(R))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C({{\mathbb {R}}}, H^1({{\mathbb {T}}}) + L^2({{\mathbb {R}}}))$$\end{document} via Gronwall’s inequality.
引用
收藏
相关论文
共 21 条
  • [1] Bourgain J(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part I: Schrödinger equations Geom. Funct. Anal. GAFA 3 107-156
  • [2] Bourgain J(1993)Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. Part II: the KdV equation Geom. Funct. Anal. GAFA 3.3 209-262
  • [3] Chaichenets L(2019)Knocking out teeth in one dimensional periodic nonlinear Schrödinger equation SIAM J. Math. Anal. 51.5 3714-3749
  • [4] Hundertmark D(1979)On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case J. Funct. Anal. 32.1 1-32
  • [5] Kunstmann PC(2017)Stability of periodic waves of 1D cubic nonlinear Schrödinger equations Appl. Math. Res. Express 2017 431-487
  • [6] Pattakos N(1998)Endpoint Strichartz estimates Am. J. Math. 120 955-980
  • [7] Ginibre J(1988)Statistical mechanics of the nonlinear Schrödinger equation J. Stat. Phys. 50 657-687
  • [8] Velo G(1999)Pulse-overlapped dispersionmanaged data transmission and intrachannel four-wave mixing Opt. Lett. 24 1454-1456
  • [9] Gustafson S(1987)L2-solutions for nonlinear Schrödinger equations and nonlinear groupsL2-solutions for nonlinear Schrödinger equations and nonlinear groups Funkcialaj Ekvacioj 30 115-125
  • [10] Le Coz S(1999)On propagation of short pulses in strong dispersion managed optical lines J. Exp. Theor. Phys. Lett. 70 578-582