Carbon nanotube-modified biocatalytic microelectrodes with multiscale porosity

被引:0
|
作者
Hao Wen
Harshal Manubhai Bambhania
Scott Calabrese Barton
机构
[1] Michigan State University,
来源
关键词
Carbon nanotubes; Carbon fiber microelectrode; Polystyrene particles; Biofuel cells; Electrocatalysis;
D O I
暂无
中图分类号
学科分类号
摘要
Macropores were introduced into nanotube matrices via polystyrene bead templates, and the resulting matrix was applied to carbon fiber microelectrodes as a porous medium for immobilization of enzymatic biocatalysts. The macropores were found to increase the electrochemically active surface area by twofold at a nominal polystyrene mass fraction of 73%. The modified electrodes were further coated with biocatalyst hydrogel comprising glucose oxidase, redox polymer, and crosslinker to create a glucose oxidizing bioanode. Glucose oxidation current density also increased two fold after introduction of the macropores. Focused ion beam cut cross-sections reveal complete adsorption of the enzyme-hydrogel matrix into the CNT layer. This templating technique is a promising approach to the maximization of surface area and transport in bioelectrodes.
引用
收藏
页码:145 / 151
页数:6
相关论文
共 50 条
  • [21] Carbon nanotube-modified glassy carbon electrode for anodic stripping voltammetric detection of Uranyle
    Ahmad Nozad Golikand
    Mehdi Asgari
    Mohammad Ghannadi Maragheh
    Elaheh Lohrasbi
    Journal of Applied Electrochemistry, 2009, 39 : 65 - 70
  • [22] Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode
    Dogan-Topal, Burcu
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (04) : 1059 - 1066
  • [23] Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid
    Wang, ZH
    Liu, J
    Liang, QL
    Wang, YM
    Luo, G
    ANALYST, 2002, 127 (05) : 653 - 658
  • [24] Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode
    Yadegari, H.
    Jabbari, A.
    Heli, H.
    Moosavi-Movahedi, A. A.
    Karimian, K.
    Khodadadi, A.
    ELECTROCHIMICA ACTA, 2008, 53 (06) : 2907 - 2916
  • [25] Electrochemical detection of phenolic estrogenic compounds at carbon nanotube-modified electrodes
    Vega, D.
    Agui, L.
    Gonzalez-Cortes, A.
    Yanez-Sedeno, R.
    Pingarron, J. M.
    TALANTA, 2007, 71 (03) : 1031 - 1038
  • [26] β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin
    He, JL
    Yang, Y
    Yang, X
    Liu, YL
    Liu, ZH
    Shen, GL
    Yu, RQ
    SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (01) : 94 - 100
  • [27] Electrooxidation of catecholamines at carbon nanotube-modified indium tin oxide electrodes
    Lin, Kuan-Wen
    Lin, Chang-Hao
    Hsieh, You-Zung
    ANALYTICA CHIMICA ACTA, 2008, 619 (01) : 49 - 53
  • [28] Carbon nanotube-modified oxidized regenerated cellulose gauzes for hemostatic applications
    Cheng, Feng
    Liu, Changyu
    Li, Hongbin
    Wei, Xinjing
    Yan, Tingsheng
    Wang, Yunfeng
    Song, Yunjia
    He, Jinmei
    Huang, Yudong
    CARBOHYDRATE POLYMERS, 2018, 183 : 246 - 253
  • [29] Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode
    Burcu Dogan-Topal
    Journal of Solid State Electrochemistry, 2013, 17 : 1059 - 1066
  • [30] Poly(brilliant green)/carbon nanotube-modified carbon film electrodes and application as sensors
    M. Emilia Ghica
    Y. Wintersteller
    Christopher M. A. Brett
    Journal of Solid State Electrochemistry, 2013, 17 : 1571 - 1580