Generating optical solitons in the extended (3+1)-dimensional nonlinear Kudryashov's equation using the extended F-expansion method

被引:11
作者
Rabie, Wafaa B. [1 ]
Ahmed, Hamdy M. [2 ]
Hashemi, Mir Sajjad [3 ]
Mirzazadeh, Mohammad [4 ]
Bayram, Mustafa [5 ]
机构
[1] Higher Inst Engn & Technol, Dept Phys & Engn Math, Tanta, Egypt
[2] El Shorouk Acad, Higher Inst Engn, Dept Phys & Engn Math, El Shorouk City, Cairo, Egypt
[3] Univ Bonab, Basic Sci Fac, Dept Math, Bonab, Iran
[4] Univ Guilan, Fac Technol & Engn East Guilan, Dept Engn Sci, Vajargah, Iran
[5] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
关键词
Solitons; Periodic solutions; Jacobi elliptic function solutions; Extended (3+1)-dimensional nonlinear Kudryashov's; Extended F-expansion technique; DERIVATION;
D O I
10.1007/s11082-024-06787-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study centers on examining the characteristics of the recently extended (3+1)-dimensional nonlinear equation proposed by Kudryashov. The extended F-expansion technique is employed to derive solitons and other exact wave solutions for this model. Applying this technique results in a diverse set of solutions, encompassing bright solitons, dark solitons, singular solitons, hyperbolic solutions, periodic solutions, singular periodic solutions, exponential solutions, rational solutions, and solutions involving Jacobi elliptic functions (JEF). This method proves to be a dependable and efficient approach for obtaining exact solutions for various nonlinear partial differential equations (NPDE). Visual representations through graphical illustrations are provided to depict the dynamics of selected solutions, and the influence of the parameter n on the obtained solutions is scrutinized and presented in pertinent figures. These discoveries not only advance our comprehension of nonlinear wave phenomena but also hold practical significance for fields related to wave propagation, nonlinear optics, and optical systems.
引用
收藏
页数:15
相关论文
共 48 条
[11]   Retrieval of optical solitons for nonlinear models with Kudryashov's quintuple power law and dual-form nonlocal nonlinearity [J].
Iqbal, Ifrah ;
Rehman, Hamood Ur ;
Mirzazadeh, Mohammad ;
Hashemi, Mir Sajjad .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (07)
[12]   Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation [J].
Kai, Yue ;
Yin, Zhixiang .
PHYSICS LETTERS A, 2022, 452
[13]   Study of the generalization of regularized long-wave equation [J].
Kai, Yue ;
Ji, Jialiang ;
Yin, Zhixiang .
NONLINEAR DYNAMICS, 2022, 107 (03) :2745-2752
[14]   Optical Solitons and traveling wave solutions to Kudryashov?s equation [J].
Khuri, S. A. ;
Wazwaz, Abdul-Majid .
OPTIK, 2023, 279
[15]   Optical Solitons with Kudryashov's Equation by Lie Symmetry Analysis [J].
Kumar, S. ;
Malik, S. ;
Biswas, A. ;
Zhou, Q. ;
Moraru, L. ;
Alzahrani, A. K. ;
Belic, M. R. .
PHYSICS OF WAVE PHENOMENA, 2020, 28 (03) :299-304
[16]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[17]   BRIGHT AND DARK SOLITONS IN A (2+1)-DIMENSIONAL SPIN-1 BOSE-EINSTEIN CONDENSATES [J].
Li, Nan ;
Chen, Quan ;
Triki, Houria ;
Liu, Feiyan ;
Sun, Yunzhou ;
Xu, Siliu ;
Zhou, Qin .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2024, 25 (05) :S1060-S1074
[18]   Wave structures and the chaotic behaviors of the cubic-quartic nonlinear Schrodinger equation for parabolic law in birefringent fibers [J].
Li, Yaxi ;
Kai, Yue .
NONLINEAR DYNAMICS, 2023, 111 (09) :8701-8712
[19]   Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrodinger equation [J].
Ma, Guoli ;
Zhao, Jianbo ;
Zhou, Qin ;
Biswas, Anjan ;
Liu, Wenjun .
NONLINEAR DYNAMICS, 2021, 106 (03) :2479-2484
[20]   Dynamics of optical solitons in the extended(3+1)-dimensional nonlinear conformable Kudryashov equation with generalized anti-cubic nonlinearity [J].
Mirzazadeh, Mohammad ;
Hashemi, Mir Sajjad ;
Akbulu, Arzu ;
Ur Rehman, Hamood ;
Iqbal, Ifrah ;
Eslami, Mostafa .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (07) :5355-5375