Generating optical solitons in the extended (3+1)-dimensional nonlinear Kudryashov's equation using the extended F-expansion method

被引:11
作者
Rabie, Wafaa B. [1 ]
Ahmed, Hamdy M. [2 ]
Hashemi, Mir Sajjad [3 ]
Mirzazadeh, Mohammad [4 ]
Bayram, Mustafa [5 ]
机构
[1] Higher Inst Engn & Technol, Dept Phys & Engn Math, Tanta, Egypt
[2] El Shorouk Acad, Higher Inst Engn, Dept Phys & Engn Math, El Shorouk City, Cairo, Egypt
[3] Univ Bonab, Basic Sci Fac, Dept Math, Bonab, Iran
[4] Univ Guilan, Fac Technol & Engn East Guilan, Dept Engn Sci, Vajargah, Iran
[5] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
关键词
Solitons; Periodic solutions; Jacobi elliptic function solutions; Extended (3+1)-dimensional nonlinear Kudryashov's; Extended F-expansion technique; DERIVATION;
D O I
10.1007/s11082-024-06787-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study centers on examining the characteristics of the recently extended (3+1)-dimensional nonlinear equation proposed by Kudryashov. The extended F-expansion technique is employed to derive solitons and other exact wave solutions for this model. Applying this technique results in a diverse set of solutions, encompassing bright solitons, dark solitons, singular solitons, hyperbolic solutions, periodic solutions, singular periodic solutions, exponential solutions, rational solutions, and solutions involving Jacobi elliptic functions (JEF). This method proves to be a dependable and efficient approach for obtaining exact solutions for various nonlinear partial differential equations (NPDE). Visual representations through graphical illustrations are provided to depict the dynamics of selected solutions, and the influence of the parameter n on the obtained solutions is scrutinized and presented in pertinent figures. These discoveries not only advance our comprehension of nonlinear wave phenomena but also hold practical significance for fields related to wave propagation, nonlinear optics, and optical systems.
引用
收藏
页数:15
相关论文
共 48 条
[1]   Optical solitons and complexitons for generalized Schrodinger-Hirota model by the modified extended direct algebraic method [J].
Ali, Mohammed H. ;
El-Owaidy, Hassan M. ;
Ahmed, Hamdy M. ;
El-Deeb, Ahmed A. ;
Samir, Islam .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (08)
[2]   Optical solitons and conservation laws of Kudryashov's equation with improved modified extended tanh-function [J].
Arnous, Ahmed H. ;
Biswas, Anjan ;
Ekici, Mehmet ;
Alzahrani, Abdullah K. ;
Belic, Milivoj R. .
OPTIK, 2021, 225
[3]   Soliton solutions of higher-order nonlinear schrodinger equation (NLSE) and nonlinear kudryashov's equation [J].
Arshed, Saima ;
Arif, Aqsa .
OPTIK, 2020, 209
[4]  
Berezin F A., 2012, The Schrodinger Equation
[5]   Dynamically controlling terahertz wavefronts with cascaded metasurfaces [J].
Cai, Xiaodong ;
Tang, Rong ;
Zhou, Haoyang ;
Li, Qiushi ;
Ma, Shaojie ;
Wang, Dongyi ;
Liu, Tong ;
Ling, Xiaohui ;
Tan, Wei ;
He, Qiong ;
Xiao, Shiyi ;
Zhou, Lei .
ADVANCED PHOTONICS, 2021, 3 (03)
[6]   On obtaining optical solitons of the perturbed cubic-quartic model having the Kudryashov's law of refractive index [J].
Cinar, Melih ;
Cakicioglu, Hasan ;
Secer, Aydin ;
Ozisik, Muslum ;
Bayram, Mustafa .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (02)
[7]   Anisotropic medium sensing controlled by bound states in the continuum in polarization-independent metasurfaces [J].
Gao, Jing-yi ;
Liu, Jin ;
Yang, Hai-ma ;
Liu, Hai-shan ;
Zeng, Guohui ;
Huang, Bo .
OPTICS EXPRESS, 2023, 31 (26) :44703-44719
[8]   Derivation of optical solitons and other solutions for nonlinear Schr?dinger equation using modified extended direct algebraic method [J].
Ghayad, Mohamed S. ;
Badra, Niveen M. ;
Ahmed, Hamdy M. ;
Rabie, Wafaa B. .
ALEXANDRIA ENGINEERING JOURNAL, 2023, 64 :801-811
[10]   Optical solitons of the perturbed nonlinear Schr?dinger equation using Lie symmetry method [J].
Hashemi, Mir Sajjad ;
Mirzazadeh, Mohammad .
OPTIK, 2023, 281