共 50 条
- [31] Quantum Codes from Repeated-Root Cyclic and Negacyclic Codes of Length 4ps Over 𝔽pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p^{m}}$\end{document} International Journal of Theoretical Physics, 2021, 60 (4) : 1299 - 1327
- [32] Linear codes over Fq×(Fq+vFq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q\times (\mathbb {F}_q+v\mathbb {F}_q)$$\end{document} Journal of Applied Mathematics and Computing, 2023, 69 (4) : 3553 - 3578
- [33] The symbol-pair distance distribution of a class of repeated-root cyclic codes over Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phantom {\dot {i}\!}\mathbb {F}_{p^{m}}$\end{document} Cryptography and Communications, 2018, 10 (4) : 643 - 653
- [34] Quantum codes from codes over the ring Fq+αFq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\pmb {\mathbb {F}}}_{q}+\alpha \pmb {\mathbb {F}}_{q}$$\end{document} Quantum Information Processing, 2019, 18
- [35] Non-binary quantum synchronizable codes based on cyclic codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{F}_q$$\end{document} Quantum Information Processing, 22 (1)
- [36] Skew cyclic codes over Z4+uZ4+vZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_{4}+u\mathbb {Z}_{4}+v\mathbb {Z}_{4}$$\end{document} Cryptography and Communications, 2023, 15 (4) : 845 - 858
- [37] Z2Z4Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2}{\mathbb {Z}}_{4}{\mathbb {Z}}_{8}$$\end{document}-Cyclic codes Journal of Applied Mathematics and Computing, 2019, 60 (1-2) : 327 - 341
- [38] Non-Binary Quantum Codes from Cyclic Codes over Fp×(Fp+vFp)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p} \times (\mathbb {F}_{p}+v\mathbb {F}_{p})$\end{document} International Journal of Theoretical Physics, 62 (2)
- [39] New EAQEC codes from cyclic codes over Z4+vZ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4}+v{\mathbb {Z}}_{4}$$\end{document} Quantum Information Processing, 23 (3)
- [40] Explicit factorization of xn-1∈Fq[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^n-1\in \mathbb {F}_q[x]$$\end{document} Designs, Codes and Cryptography, 2015, 77 (1) : 277 - 286