A class of constacyclic codes over Fpm[u]/u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}}_{p^m}[u]/\left\langle u^2\right\rangle$$\end{document}

被引:0
|
作者
Saroj Rani
机构
[1] S. A. Jain P. G. College,Department of Mathematics
关键词
Negacyclic codes; Cyclic codes; Semi-local rings; 94B15;
D O I
10.1007/s13226-021-00001-2
中图分类号
学科分类号
摘要
Let p be an odd prime, and let m be a positive integer satisfying pm≡3(mod4).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^m \equiv 3~(\text {mod }4).$$\end{document} Let Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{p^m}$$\end{document} be the finite field with pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^m$$\end{document} elements, and let R=Fpm[u]/u2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\mathbb {F}_{p^m}[u]/\left\langle u^2\right\rangle$$\end{document} be the finite commutative chain ring with unity. In this paper, we determine all constacyclic codes of length 4ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4p^s$$\end{document} over R and their dual codes, where s is a positive integer. We also determine their sizes and list some isodual constacyclic codes of length 4ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4p^s$$\end{document} over R.
引用
收藏
页码:355 / 371
页数:16
相关论文
共 50 条