共 50 条
- [1] On cyclic codes over the ring Zp[u]/〈uk〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z _p[u]/\langle u^k\rangle $$\end{document} Designs, Codes and Cryptography, 2015, 74 (1) : 1 - 13
- [2] (1−2u3)-constacyclic codes and quadratic residue codes over Fp[u]/〈u4−u〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p}[u]/\langle u^{4}-u\rangle $\end{document} Cryptography and Communications, 2017, 9 (4) : 459 - 473
- [3] Generators of negacyclic codes over Fp[u,v]/⟨u2,v2,uv,vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p}[u,v]/\langle u^2,v^2,uv,vu\rangle $$\end{document} of length ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^s$$\end{document} Computational and Applied Mathematics, 2024, 43 (5)
- [4] Decoding of Cyclic Codes Over the Ring F2[u]〈ut〉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{{{F_2}\left[ u \right]}}{{\langle {u^t}\rangle }}$$\end{document} Indian Journal of Pure and Applied Mathematics, 2019, 50 (1) : 113 - 120
- [5] (θ,δθ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\theta , \delta _\theta )$$\end{document}-Cyclic codes over Fq[u,v]/⟨u2-u,v2-v,uv-vu⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q[u,v]/\langle u^2-u, v^2-v, uv-vu \rangle $$\end{document} Designs, Codes and Cryptography, 2022, 90 (11) : 2763 - 2781
- [6] F2[u]F2[u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{2}[u]{\mathbb {F}}_{2}[u] $$\end{document}-additive cyclic codes are asymptotically good Journal of Applied Mathematics and Computing, 2023, 69 (1) : 1037 - 1056
- [7] Quantum codes from Z2Z2[u]/⟨u4⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle $$\end{document}-cyclic codes Designs, Codes and Cryptography, 2022, 90 (2) : 343 - 366
- [8] Cyclic codes over M2(𝔽2+u𝔽2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{2}(\mathbb {F}_{2}+u\mathbb {F}_{2})$\end{document} Cryptography and Communications, 2018, 10 (6) : 1109 - 1117
- [9] Some results on linear codes over Fp+uFp+u2Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p+u\mathbb {F}_p+u^2\mathbb {F}_p$$\end{document} Journal of Applied Mathematics and Computing, 2015, 47 (1-2) : 473 - 485
- [10] Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length 4ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4p^s$$\end{document} over Fpm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^m}$$\end{document} Quantum Information Processing, 2021, 20 (11)