Fixed point theorems for FR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\mathfrak {R}$$\end{document}-contractions with applications to solution of nonlinear matrix equations

被引:0
作者
Kanokwan Sawangsup
Wutiphol Sintunavarat
Antonio Francisco Roldán López de Hierro
机构
[1] Thammasat University Rangsit Center,Department of Mathematics and Statistics Faculty of Science and Technology
[2] University of Granada,Department of Quantitative Methods for Economics and Business
[3] University of Jaén,PAIDI Research Group FQM
关键词
Complete metric space; Binary relation; -contraction; 47H10; 54H25;
D O I
10.1007/s11784-016-0306-z
中图分类号
学科分类号
摘要
In (Fixed Point Theory Appl 94:6, 2012), the author introduced a new kind of contractions, called F-contractions, that extended the Banach contractions in a newfangled way. In this work, we introduce the notion of FR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\mathfrak {R}$$\end{document}-contraction where R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {R}$$\end{document} is a binary relation on its domain that has not to be neither transitive nor a partial order. Consequently, we establish some fixed point results for such contractions in complete metric spaces that improve the Wardowski’s original idea and we also give illustrative examples. Furthermore, we show some results to guarantee existence and uniqueness of fixed point of N-order. As an application, we apply our main result to study a class of nonlinear matrix equation.
引用
收藏
页码:1711 / 1725
页数:14
相关论文
共 30 条
  • [1] Agarwal RP(2004)Fixed point theory for generalized contractive maps of Meir-Keeler type Math. Nachr. 276 3-22
  • [2] O’Regan D(2003)On the approximation of fixed points of weak contractive mappings Carpath. J. Math. 19 7-22
  • [3] Shahzad N(1969)On nonlinear contractions Proc. Am. Math. Soc. 20 458-464
  • [4] Berinde V(1974)A generalization of Banachs contraction principle Proc. Am. Math. Soc. 45 267-273
  • [5] Boyd DW(2010)Some new results and generalizations in metric fixed point theory Nonlinear Anal. 73 1439-1446
  • [6] Wong JSW(1973)A generalization of a fixed point theorem of Reich Can. Math. Bull. 16 201-206
  • [7] Ćirić LB(1977)Fixed point theorems for mappings with a contractive iterate at a point Proc. Am. Math. Soc. 62 344-348
  • [8] Du W-S(1971)Kannan’s fixed point theorem Bollettino della Unione Matematica Italiana 4 1-11
  • [9] Hardy GE(2008)A generalized Banach contraction principle that characterizes metric completeness Proc. Am. Math. Soc. 136 1861-1869
  • [10] Rogers TD(2001)Some theorems on weakly contractive maps Nonlinear Anal. 47 2683-2693