Exogenous application of salicylic acid ameliorates salinity stress in barley (Hordeum vulgare L.)

被引:6
|
作者
Hanif, Shazia [1 ]
Mahmood, Athar [2 ]
Javed, Talha [3 ]
Bibi, Safura [1 ]
Zia, Muhammad Anjum [8 ]
Asghar, Saima [1 ]
Naeem, Zunaira [1 ]
Ercisli, Sezai [4 ,5 ]
Rahimi, Mehdi [6 ]
Ali, Baber [7 ]
机构
[1] Univ Agriculture, Fac Sci, Dept Bot, Faisalabad 38040, Pakistan
[2] Univ Agriculture, Dept Agron, Faisalabad 38040, Pakistan
[3] Chinese Acad Trop Agr Sci, Inst Trop Biosci & Biotechnol, Haikou 571101, Peoples R China
[4] Ataturk Univ, Agr Fac, Dept Hort, TR-25240 Erzurum, Turkiye
[5] Ata Teknokent, HGF Agro, TR-25240 Erzurum, Turkiye
[6] Grad Univ Adv Technol, Inst Sci & High Technol & Environm Sci, Dept Biotechnol, Kerman, Iran
[7] Quaid I Azam Univ, Dept Plant Sci, Islamabad 45320, Pakistan
[8] Univ Agr Faisalabad, Dept Biochem, Faisalabad 38040, Pakistan
关键词
Barley; Salicylic acid; Salinity; Morphology; Physiology; Yield; GROWTH; MAIZE;
D O I
10.1186/s12870-024-04968-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Barley (Hordeum vulgare L.) is a significant cereal crop belonging to Poaceae that is essential for human food and animal feeding. The production of barley grains was around 142.37 million tons in 2017/2018. However, the growth of barley was influenced by salinity which was enhanced by applying a foliar spray of salicylic acid. The current study investigated to evaluated the potential effect of SA on the barley (Hordeum vulgare L.) plants under salinity stress and its possible effects on physiological, biochemical, and growth responses. The experiment was conducted at Postgraduate Research Station (PARS), University of Agriculture; Faisalabad to assess the influence of salicylic acid on barley (Hordeum vulgare L.) under highly saline conditions. The experiment was conducted in a Completely Randomized Design (CRD) with 3 replicates. In plastic pots containing 8 kg of properly cleaned sand, two different types of barley (Sultan and Jau-17) were planted. The plants were then watered with a half-strength solution of Hoagland's nutritional solution. After the establishment of seedlings, two salt treatments (0 mM and 120 mM NaCl) were applied in combining three levels of exogenously applied salicylic acid (SA) (0, 0.5, and 1 mg L-1). Data about morphological, physiological, and biochemical attributes was recorded using standard procedure after three weeks of treatment. The morpho-physiological fresh weight of the shoot and root (48%), the dry mass of the shoot and root (66%), the plant height (18%), the chlorophyll a (30%), the chlorophyll b (22%), and the carotenoids (22%), all showed significant decreases. Salinity also decreased yield parameters and the chl. ratio (both at 29% and 26% of the total chl. leaf area index). Compared to the control parameters, the following data was recorded under salt stress: spike length, number of spikes, number of spikelets, number of tillers, biological yield, and harvest index. Salicylic acid was used as a foliar spray to lessen the effects of salinity stress, and 1 mg L-1 of salicylic acid proved more effective than 0.5 mg L-1. Both varieties show better growth by applying salicylic acid (0 mg L-1) as a control, showing normal growth. By increasing its level to (0.5 mg L-1), it shows better growth but maximized growth occurred at a higher level (1 mg L-1). Barley sultan (Hordeum vulgare L.) is the best variety as compared to Jau-17 performs more growth to mitigate salt stress (0mM and 120mM NaCl) by improving morpho-physiological parameters by enhancing plan height, Root and shoot fresh and dry weights, as well as root and shoot lengths, photosynthetic pigments, area of the leaves and their index, and yield attributes and reduce sodium ions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Expression analysis of barley (Hordeum vulgare L.) during salinity stress
    Walia H.
    Wilson C.
    Wahid A.
    Condamine P.
    Cui X.
    Close T.J.
    Functional & Integrative Genomics, 2006, 6 (2) : 143 - 156
  • [2] Genetic Variation and Alleviation of Salinity Stress in Barley (Hordeum vulgare L.)
    El-Esawi, Mohamed A.
    Alaraidh, Ibrahim A.
    Alsahli, Abdulaziz A.
    Ali, Hayssam M.
    Alayafi, Aisha A.
    Witczak, Jacques
    Ahmad, Margaret
    MOLECULES, 2018, 23 (10):
  • [3] The Effects of Exogenous Salicylic Acid on Endogenous Phytohormone Status in Hordeum vulgare L. under Salt Stress
    Torun, Huelya
    Novak, Ondrej
    Mikulik, Jaromir
    Strnad, Miroslav
    Ayaz, Faik Ahmet
    PLANTS-BASEL, 2022, 11 (05):
  • [4] Heritability of physiological traits of barley (Hordeum Vulgare L.) under salinity stress
    Andarab, Siavash Solhi
    Rashidi, Varahram
    Shahbazi, Hossein
    Farahvash, Farhad
    Ahmadzadeh, Alireza
    ADVANCEMENTS IN LIFE SCIENCES, 2022, 9 (02): : 207 - 213
  • [5] Physiological and Biochemical Evaluation of Barley (Hordeum vulgare L.) under Salinity Stress
    Narimani, T.
    Toorchi, M.
    Tarinejad, A. R.
    Mohammadi, S. A.
    Mohammadi, H.
    JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY, 2020, 22 (04): : 1009 - 1021
  • [6] Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars
    Mutlu, Salih
    Atici, Okkes
    Nalbantoglu, Barbaros
    Mete, Ebru
    FRONTIERS IN LIFE SCIENCE, 2016, 9 (02): : 99 - 109
  • [7] Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.)
    Gaofeng Zhou
    Peter Johnson
    Peter R. Ryan
    Emmanuel Delhaize
    Meixue Zhou
    Molecular Breeding, 2012, 29 : 427 - 436
  • [8] Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.)
    Zhou, Gaofeng
    Johnson, Peter
    Ryan, Peter R.
    Delhaize, Emmanuel
    Zhou, Meixue
    MOLECULAR BREEDING, 2012, 29 (02) : 427 - 436
  • [9] Evaluating Variation in Germination and Growth of Landraces of Barley (Hordeum vulgare L.) Under Salinity Stress
    Cope, Jonathan E.
    Norton, Gareth J.
    George, Timothy S.
    Newton, Adrian C.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [10] Responses of Barley (Hordeum vulgare L.) Genotypes to Salinity Stress Under Controlled and Field Conditions
    Hamzeh Abbasipour Bahrani
    Habibollah Ghazvini
    Bahram Amiri
    Foroud Bazrafshan
    Hamidreza Nikkhah
    Gesunde Pflanzen, 2023, 75 : 499 - 513