Schauder theory for Dirichlet elliptic operators in divergence form

被引:0
作者
Yoichi Miyazaki
机构
[1] Nihon University,School of Dentistry
来源
Journal of Evolution Equations | 2013年 / 13卷
关键词
35J40 (35B45); Elliptic operator in divergence form; Dirichlet boundary condition; Schauder estimate; Hölder space; Regularity theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a strongly elliptic operator of order 2m in divergence form with Hölder continuous coefficients of exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma \in (0,1)}$$\end{document} defined in a uniformly C1+σ domain Ω of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document} . Regarding A as an operator from the Hölder space of order m +  σ associated with the Dirichlet data to the Hölder space of order −m +  σ, we show that the inverse (A − λ)−1 exists for λ in a suitable angular region of the complex plane and estimate its operator norms. As an application, we give a regularity theorem for elliptic equations.
引用
收藏
页码:443 / 480
页数:37
相关论文
共 10 条
  • [1] Agmon S.(1959)Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I Commun. Pure Appl. Math. 12 623-727
  • [2] Douglis A.(2003)The J. Diff. Equ. 188 555-568
  • [3] Nirenberg L.(2004) resolvents of elliptic operators with uniformly continuous coefficients J. Diff. Equ. 206 353-372
  • [4] Miyazaki Y.(2005)The Equ. 215 320-356
  • [5] Miyazaki Y.(2006) resolvents of second-order elliptic operators of divergence form under the Dirichlet condition J. Diff. Equ. 230 174-195
  • [6] Miyazaki Y.(1974)The Publ. Res. Inst. Math. Sci. Kyoto Univ. 9 325-396
  • [7] Miyazaki Y.(1999) theory of divergence form elliptic operators under the Dirichlet condition. J. Diff J. London Math. Soc. 60 237-257
  • [8] Muramatu T.(1997)Higher order elliptic operators of divergence form in C 1 or Lipschitz domains Calc. Var. 5 391-407
  • [9] Rychkov V. S.(undefined)On Besov spaces and Sobolev spaces of generalized functions defined on a general region undefined undefined undefined-undefined
  • [10] Simon L.(undefined)On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains undefined undefined undefined-undefined