Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes

被引:0
|
作者
Jingchun Jia
Xiang Hu
Zhenhai Wen
机构
[1] Chinese Academy of Sciences,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter
[2] Chinese Academy of Sciences,Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter
来源
Nano Research | 2018年 / 11卷
关键词
network architectures; ultrathin carbon; MnO; Li-ion battery; anode;
D O I
暂无
中图分类号
学科分类号
摘要
A strategy was developed to fabricate a set of MnO@C nanohybrids with MnO nanoparticles (NPs) embedded in an ultrathin three-dimensional (3D) carbon framework for use as anode materials for lithium-ion batteries (LIBs). The 3D carbon frameworks provide MnO NPs with electrical pathways and mechanical robustness, which efficiently improved the reaction kinetics, prevented the MnO from fracturing and agglomerating, and limited the formation of a solid electrolyte interface (SEI) at the MnO–electrolyte interface. Benefitting from the unique 3D framework structure, the MnO/C nanohybrids carbonized at 500 °C exhibited a highly reversible specific capacity of 1,420 mAh·g−1 at 0.2 A·g−1, excellent cycling stability with 98% capacity retention, and enhanced rate performance of 680 mAh·g−1 at 2 A·g−1. The feasibility of the large-scale production of such MnO/C nanohybrids, associated with their outstanding Li-ion storage properties, opens a promising avenue for the development of high-performance anodes for nextgeneration LIBs.
引用
收藏
页码:1135 / 1145
页数:10
相关论文
共 50 条
  • [41] Ge nanoparticles uniformly immobilized on 3D interconnected porous graphene frameworks as anodes for high-performance lithium-ion batteries
    Chen, Yao
    Zou, Yuming
    Shen, Xiaoping
    Qiu, Jingxia
    Lian, Jiabiao
    Pu, Jinrui
    Li, Sheng
    Du, Fei-Hu
    Li, Shang-Qi
    Ji, Zhenyuan
    Yuan, Aihua
    JOURNAL OF ENERGY CHEMISTRY, 2022, 69 : 161 - 173
  • [42] High-performance and flexible lithium-ion battery anodes using modified buckypaper
    Kim, Hyungjoo
    Ri, Vitalii
    Koo, Jahun
    Kim, Chunjoong
    Shin, Hosun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 930
  • [43] Laser structured Cu foil for high-performance lithium-ion battery anodes
    Zhang, Ningxin
    Zheng, Yijing
    Trifonova, Atanaska
    Pfleging, Wilhelm
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2017, 47 (07) : 829 - 837
  • [44] A review on structuralized current collectors for high-performance lithium-ion battery anodes
    Yang, Yang
    Yuan, Wei
    Zhang, Xiaoqing
    Ke, Yuzhi
    Qiu, Zhiqiang
    Luo, Jian
    Tang, Yong
    Wang, Chun
    Yuan, Yuhang
    Huang, Yao
    APPLIED ENERGY, 2020, 276 (276)
  • [45] Laser structured Cu foil for high-performance lithium-ion battery anodes
    Ningxin Zhang
    Yijing Zheng
    Atanaska Trifonova
    Wilhelm Pfleging
    Journal of Applied Electrochemistry, 2017, 47 : 829 - 837
  • [46] Morphological Influence in Lithium-Ion Battery 3D Electrode Architectures
    Martin, Michael A.
    Chen, Chien-Fan
    Mukherjee, Partha P.
    Pannala, Sreekanth
    Dietiker, Jean-Francois
    Turner, John A.
    Ranjan, Devesh
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) : A991 - A1002
  • [47] SnO2/Sn Nanoparticles Embedded in an Ordered, Porous Carbon Framework for High-Performance Lithium-Ion Battery Anodes
    Wang, Zhi-Qiang
    Wang, Ming-Shan
    Yang, Zhen-Liang
    Bai, Yong-Shun
    Ma, Yan
    Wang, Guo-Liang
    Huang, Yun
    Li, Xing
    CHEMELECTROCHEM, 2017, 4 (02): : 345 - 352
  • [48] Sn-C bonding anchored SnSe nanoparticles grown on carbon nanotubes for high-performance lithium-ion battery anodes
    Luo, Xiaomin
    Huang, Jianfeng
    Li, Jiayin
    Cao, Liyun
    Cheng, Yayi
    Guo, Ling
    Wang, Yong
    Qi, Hui
    APPLIED SURFACE SCIENCE, 2019, 491 : 95 - 104
  • [49] Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes
    Huang, Rui
    Fan, Xing
    Shen, Wanci
    Zhu, Jing
    APPLIED PHYSICS LETTERS, 2009, 95 (13)
  • [50] Sulfur/Nitrogen Co-Doped Mesoporous Carbon for High-Performance Lithium-Ion Battery Anodes
    Yu-Long Xie
    Journal of Electronic Materials, 2022, 51 : 4299 - 4306