Neutron star crustal properties from relativistic mean-field models and bulk parameters effects

被引:0
|
作者
M. Dutra
C. H. Lenzi
W. de Paula
O. Lourenço
机构
[1] Instituto Tecnológico de Aeronáutica,Departamento de Física
[2] DCTA,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We calculate crustal properties of neutron stars, namely, mass (Mcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm{crust}$$\end{document}), radius (Rcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{crust}$$\end{document}) and fraction of moment of inertia (ΔI/I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I$$\end{document}) from parametrizations of hadronic relativistic mean-field (RMF) model consistent with symmetric and asymmetric nuclear matter constraints, as well as some stellar boundaries. We verify which one are also in agreement with restrictions of ΔI/I⩾1.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 1.4\%$$\end{document} and ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document} related to the glitching mechanism observed in pulsars, such as the Vela one. The latter constraint explains the glitches phenomenon when entrainment effects are taken into account. Our findings indicate that these parametrizations pass in the glitching limit for a neutron star mass range of M⩽1.82M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\leqslant 1.82M_\odot $$\end{document} (ΔI/I⩾1.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 1.4\%$$\end{document}), and M⩽1.16M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\leqslant 1.16M_\odot $$\end{document} (ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document}). We also investigate the influence of nuclear matter bulk parameters on crustal properties and find that symmetry energy is the quantity that produces the higher variations on Mcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm{crust}$$\end{document}, Rcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{crust}$$\end{document}, and ΔI/I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I$$\end{document}. Based on the results, we construct a particular RMF parametrization able to satisfy ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document} even at M=1.4M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1.4M_\odot $$\end{document}, the mass value used to fit data from the softer component of the Vela pulsar X-ray spectrum. The model also presents compatibility with observational data from PSR J1614−2230, PSR J0348 + 0432, and MSP J0740 + 6620 pulsars, as well as, with data from the Neutron Star Interior Composition Explorer (NICER) mission.
引用
收藏
相关论文
共 50 条
  • [21] General predictions of neutron star properties using unified relativistic mean-field equations of state
    Scurto, Luigi
    Pais, Helena
    Gulminelli, Francesca
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [22] Structure and properties of neutron stars in the relativistic mean-field theory
    Bednarek, I
    Manka, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2001, 10 (05): : 607 - 624
  • [23] Relativistic mean-field models with scaled hadron masses and couplings: Hyperons and maximum neutron star mass
    Maslov, K. A.
    Kolomeitsev, E. E.
    Voskresensky, D. N.
    NUCLEAR PHYSICS A, 2016, 950 : 64 - 109
  • [24] Magnetized neutron star crust within effective relativistic mean-field model
    Parmar, Vishal
    Das, H. C.
    Sharma, M. K.
    Patra, S. K.
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [25] Protoneutron star in the relativistic mean-field theory
    Manka, R
    Zastawny-Kubica, M
    Brzezina, A
    Bednarek, I
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2001, 27 (09) : 1917 - 1938
  • [26] The effects of interior magnetic fields on the properties of neutron stars in the relativistic mean-field theory
    Yuan, YF
    Zhang, JL
    ASTROPHYSICAL JOURNAL, 1999, 525 (02): : 950 - 958
  • [27] The mean-square radius of the neutron distribution in the relativistic and non-relativistic mean-field models
    Kurasawa, Haruki
    Suzuki, Toshio
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (02):
  • [28] Relativistic mean-field mass models
    Pena-Arteaga, D.
    Goriely, S.
    Chamel, N.
    EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (10):
  • [29] Relativistic mean-field mass models
    D. Peña-Arteaga
    S. Goriely
    N. Chamel
    The European Physical Journal A, 2016, 52
  • [30] Kaon condensation in neutron star using relativistic mean field models
    Hong, S. W.
    Hyun, C. H.
    Ryu, C. Y.
    PROCEEDINGS OF THE IX INTERNATIONAL CONFERENCE ON HYPERNUCLEAR AND STRANGE PARTICLE PHYSICS, 2007, : 393 - +