Neutron star crustal properties from relativistic mean-field models and bulk parameters effects

被引:0
|
作者
M. Dutra
C. H. Lenzi
W. de Paula
O. Lourenço
机构
[1] Instituto Tecnológico de Aeronáutica,Departamento de Física
[2] DCTA,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We calculate crustal properties of neutron stars, namely, mass (Mcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm{crust}$$\end{document}), radius (Rcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{crust}$$\end{document}) and fraction of moment of inertia (ΔI/I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I$$\end{document}) from parametrizations of hadronic relativistic mean-field (RMF) model consistent with symmetric and asymmetric nuclear matter constraints, as well as some stellar boundaries. We verify which one are also in agreement with restrictions of ΔI/I⩾1.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 1.4\%$$\end{document} and ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document} related to the glitching mechanism observed in pulsars, such as the Vela one. The latter constraint explains the glitches phenomenon when entrainment effects are taken into account. Our findings indicate that these parametrizations pass in the glitching limit for a neutron star mass range of M⩽1.82M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\leqslant 1.82M_\odot $$\end{document} (ΔI/I⩾1.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 1.4\%$$\end{document}), and M⩽1.16M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\leqslant 1.16M_\odot $$\end{document} (ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document}). We also investigate the influence of nuclear matter bulk parameters on crustal properties and find that symmetry energy is the quantity that produces the higher variations on Mcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_\mathrm{crust}$$\end{document}, Rcrust\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\mathrm{crust}$$\end{document}, and ΔI/I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I$$\end{document}. Based on the results, we construct a particular RMF parametrization able to satisfy ΔI/I⩾7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta I/I \geqslant 7\%$$\end{document} even at M=1.4M⊙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=1.4M_\odot $$\end{document}, the mass value used to fit data from the softer component of the Vela pulsar X-ray spectrum. The model also presents compatibility with observational data from PSR J1614−2230, PSR J0348 + 0432, and MSP J0740 + 6620 pulsars, as well as, with data from the Neutron Star Interior Composition Explorer (NICER) mission.
引用
收藏
相关论文
共 50 条
  • [1] Neutron star crustal properties from relativistic mean-field models and bulk parameters effects
    Dutra, M.
    Lenzi, C. H.
    de Paula, W.
    Lourenco, O.
    EUROPEAN PHYSICAL JOURNAL A, 2021, 57 (08):
  • [2] Crustal properties of a neutron star within an effective relativistic mean-field model
    Parmar, Vishal
    Das, H. C.
    Kumar, Ankit
    Sharma, M. K.
    Patra, S. K.
    PHYSICAL REVIEW D, 2022, 105 (04)
  • [3] Antikaons in the Extended Relativistic Mean-Field Models for Neutron Star
    Gupta, Neha
    Arumugam, P.
    NUCLEAR STRUCTURE AND DYNAMICS '12, 2012, 1491 : 289 - 290
  • [4] Properties of rotating neutron star in density-dependent relativistic mean-field models
    Riahi, Rashid
    Kalantari, Seyed Zafarollah
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2021, 30 (01):
  • [5] Neutron star in relativistic mean-field approximation
    Sun, BX
    Jia, HY
    Meng, J
    Zhao, EG
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2000, 24 : 69 - 72
  • [6] Hyperons in neutron star matter within relativistic mean-field models
    Oertel, M.
    Providencia, C.
    Gulminelli, F.
    Raduta, A. R.
    PHYSICS OF PARTICLES AND NUCLEI, 2015, 46 (05) : 830 - 834
  • [7] Hyperons in neutron star matter within relativistic mean-field models
    Oertel, M.
    Providencia, C.
    Gulminelli, F.
    Raduta, Ad R.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2015, 42 (07)
  • [8] Hyperons in neutron star matter within relativistic mean-field models
    M. Oertel
    C. Providencia
    F. Gulminelli
    A. R. Raduta
    Physics of Particles and Nuclei, 2015, 46 : 830 - 834
  • [9] Neutron star matter in a relativistic mean-field theory
    Manka, R
    Bednarek, I
    Przybyla, G
    PHYSICAL REVIEW C, 2000, 62 (01): : 158021 - 1580210
  • [10] Neutron star deformability with hyperonization in density dependent relativistic mean-field models
    Shangguan, W. Z.
    Huang, Z. Q.
    Wei, S. N.
    Jiang, W. Z.
    PHYSICAL REVIEW D, 2021, 104 (06)