Theoretical investigation of the generalized synchronization of dissipative coupled chaotic systems in the presence of noise

被引:0
作者
Koronovskii A.A. [1 ]
Moskalenko O.I. [1 ]
Ovchinnikov A.A. [1 ]
Hramov A.E. [1 ]
机构
[1] Chernyshevskii State University, Saratov 410012
基金
俄罗斯基础研究基金会;
关键词
Chaotic systems;
D O I
10.3103/S1062873809120168
中图分类号
N94 [系统科学]; C94 [];
学科分类号
0711 ; 081103 ; 1201 ;
摘要
The noise influence on the generalized synchronization mode in dissipative coupled chaotic systems is analyzed. It is shown that the noise practically does not influence the threshold of the synchronous mode occurrence. The generalized synchronization is noise-resistant. The reasons for the revealed particularity are explained by means of the modified system approach [18] and verified by the results of numerical simulation of unidirectional coupled flow systems and discrete mapping. © 2009 Allerton Press, Inc.
引用
收藏
页码:1616 / 1619
页数:3
相关论文
共 23 条
[1]  
Boccaletti S., Kurths J., Osipov G.V., Et al., Phys. Rep., 366, (2002)
[2]  
Pikovskii A.S., Rosenblyum M.G., Kurths J., Sinkhronizatsiya. fundamental'Noe Nelineinoe Yavlenie (Synchronization. Fundamental Nonlinear Phenomena), (2003)
[3]  
Glass L., Synchronization and rhythmic processes in physiology, Nature, 410, 6825, pp. 277-284, (2001)
[4]  
Roy R., Communications technology: Chaos down the line, Nature, 438, 7066, pp. 298-299, (2005)
[5]  
Dmitriev B.S., Hramov A.E., Koronovskii A.A., Et al., Phys. Rev. Lett., 102, 7, (2009)
[6]  
Hramov A.E., Koronovskii A.A., An approach to chaotic synchronization, Chaos, 14, 3, pp. 603-610, (2004)
[7]  
Gauthier D.J., Bienfang J.C., Phys. Rev. Lett., 77, 9, (1996)
[8]  
Zhu L., Raghu A., Lai Y.-C., Experimental observation of superpersistent chaotic transients, Physical Review Letters, 86, 18, pp. 4017-4020, (2001)
[9]  
Toral R., Mirasso C.R., Hernandez-Garsia E., Piro O., Chaos, 11, 3, (2001)
[10]  
Hramov A.E., Koronovskii A.A., Moskalenko O.I., Phys. Lett. A, 354, pp. 5-6, (2006)