Jordan counterparts of Rickart and Baer ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-algebras, II

被引:0
作者
Shavkat Ayupov
Farhodjon Arzikulov
机构
[1] Uzbekistan Academy of Sciences,V. I. Romanovskiy Institute of Mathematics
[2] Andizhan State University,Department of Mathematics
关键词
Jordan algebras; Jordan annihilators; Degenerate radical; Baer ; -algebras;
D O I
10.1007/s40863-017-0083-7
中图分类号
学科分类号
摘要
We introduce and investigate new classes of Jordan algebras which are close to but wider than Rickart and Baer Jordan algebras. Such Jordan algebras are called weak RJ- and weak BJ-algebras respectively. Criterions are given for a Jordan algebra to be a weak BJ-algebra. Also, it is proved that every finite dimensional Jordan algebra A, the degenerate radical of which does not have nilpotent elements with a square root in A and the quotient with respect to this radical of which has no nilpotent elements, is a weak BJ-algebra.
引用
收藏
页码:27 / 38
页数:11
相关论文
共 4 条
  • [1] Arzikulov FN(1998)On abstract JW-algebras Sib. Math. J. 39 20-27
  • [2] Jordan P(1934)On an algebraic generalization of the quantum mechanical formalism Ann. Math. 35 29-64
  • [3] von Neumann J(undefined)undefined undefined undefined undefined-undefined
  • [4] Wigner E(undefined)undefined undefined undefined undefined-undefined