On the Bundle of Clifford Algebras Over the Space of Quadratic Forms

被引:0
作者
Arkadiusz Jadczyk
机构
[1] Université de Toulouse III and Ronin Institute,Laboratoire de Physique Théorique
来源
Advances in Applied Clifford Algebras | 2023年 / 33卷
关键词
Tensor algebra; Clifford algebra; Exterior algebra; Chevalley’s isomorphism; Gauge tranformations; 15A63; 15A66; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
For each quadratic form Q∈Quad(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\in \text{ Quad }(V)$$\end{document} on a vector space over a field K,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K},$$\end{document} we can define the Clifford algebra Cl(V,Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(V,Q)$$\end{document} as the quotient T(V)/I(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{T}\,}}(V)/I(Q)$$\end{document} of the tensor algebra T(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{T}\,}}(V)$$\end{document} by the two-sided ideal generated by expressions of the form x⊗x-Q(x),x∈V.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\otimes x-Q(x),\, x\in V.$$\end{document} In the present paper we consider the whole family {Cl(V,Q):Q∈Quad(V)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{{{\,\textrm{Cl}\,}}(V,Q):\, Q\in \text{ Quad }(V)\}$$\end{document} in a geometric way as a Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2$$\end{document}-graded vector bundle over the base manifold Quad(V).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ Quad }(V).$$\end{document} Bilinear forms F∈Bil(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\in \text{ Bil }(V)$$\end{document} act on this bundle providing natural bijective linear mappings λ¯F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\lambda }_F$$\end{document} between different Clifford algebras Cl(V,Q).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(V,Q).$$\end{document} Alternating (or antisymmetric) forms induce vertical automorphisms, which we propose to consider as ‘gauge transformations’. We develop here the formalism of Bourbaki, which generalizes the well known Chevalley’s isomorphism Cl(V,Q)→End(⋀(V))→⋀(V).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(V,Q)\rightarrow {{\,\textrm{End}\,}}(\bigwedge (V))\rightarrow \bigwedge (V).$$\end{document} In particular we realize the Clifford algebra twisting gauge transformations induced by antisymmetric bilinear forms as exponentials of contractions with elements of ⋀2(V∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigwedge ^2(V^*)$$\end{document} representing these forms. Throughout all this paper we intentionally avoid using the so far accepted term “Clifford algebra of a bilinear form” (known otherwise as “Quantum Clifford algebra”), which we consider as possibly misleading, as it does not represent any well defined mathematical object. Instead we show explicitly how any given Clifford algebra Cl(Q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(Q)$$\end{document} can be naturally realized as acting via endomorphisms of any other Clifford algebra Cl(Q′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Cl}\,}}(Q')$$\end{document} if Q′=Q+QF,F∈Bil(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q'=Q+Q_F,\, F\in \text{ Bil }(V)$$\end{document} and QF(x)=F(x,x).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_F(x)=F(x,x).$$\end{document} Possible physical meaning of such transformations is also mentioned.
引用
收藏
相关论文
共 50 条
  • [31] Tensor products of Clifford algebras
    Marchuk, N. G.
    DOKLADY MATHEMATICS, 2013, 87 (02) : 185 - 188
  • [32] On Hyperbolic Clifford Algebras with Involution
    Mahmoudi, M. G.
    ALGEBRA COLLOQUIUM, 2013, 20 (02) : 251 - 260
  • [33] Method of Averaging in Clifford Algebras
    D. S. Shirokov
    Advances in Applied Clifford Algebras, 2017, 27 : 149 - 163
  • [34] Unitary spaces on Clifford algebras
    Marchuk, N. G.
    Shirokov, D. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (02) : 237 - 254
  • [35] Ideal Structure of Clifford Algebras
    Yi Ming Zou
    Advances in Applied Clifford Algebras, 2009, 19 : 147 - 153
  • [36] Extended Grassmann and Clifford Algebras
    R. da Rocha
    J. Vaz
    Advances in Applied Clifford Algebras, 2006, 16 : 103 - 125
  • [37] Tensor products of Clifford algebras
    N. G. Marchuk
    Doklady Mathematics, 2013, 87 : 185 - 188
  • [38] Mathematical structure of clifford algebras
    Porteous, I
    LECTURES ON CLIFFORD (GEOMETRIC) ALGEBRAS AND APPLICATIONS, 2004, : 31 - 52
  • [39] ON COMPLEX REPRESENTATIONS OF THE CLIFFORD ALGEBRAS
    Song, Youngkwon
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (02): : 487 - 497
  • [40] Unitary Spaces on Clifford Algebras
    N. G. Marchuk
    D. S. Shirokov
    Advances in Applied Clifford Algebras, 2008, 18 : 237 - 254