Singularity Categories, Schur Functors and Triangular Matrix Rings

被引:0
作者
Xiao-Wu Chen
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
Algebras and Representation Theory | 2009年 / 12卷
关键词
Singularity category; Schur functor; Triangular matrix ring; Gorenstein ring; 18E30; 18E35; 16E65;
D O I
暂无
中图分类号
学科分类号
摘要
We study certain Schur functors which preserve singularity categories of rings and we apply them to study the singularity category of triangular matrix rings. In particular, combining these results with Buchweitz–Happel’s theorem, we can describe singularity categories of certain non-Gorenstein rings via the stable category of maximal Cohen–Macaulay modules. Three concrete examples of finite-dimensional algebras with the same singularity category are discussed.
引用
收藏
页码:181 / 191
页数:10
相关论文
共 12 条
[1]  
Chen XW(2007)Quotient triangulated categories Manuscr. Math. 123 167-183
[2]  
Zhang P(2004)Extensions of modules over Schur algebras, symmetric groups and Hecke algebras Algebr. Represent. Theory 7 67-100
[3]  
Doty SR(2003)D-branes in Landau–Ginzburg models and algebraic geometry J. High Energy Phys. 12 44-483
[4]  
Erdmann K(1991)Localization of triangulated categories and derived categories J. Algebra 141 463-248
[5]  
Nakano DK(2004)Triangulated categories of singularities and D-branes in Landau–Ginzburg models Proc. Steklov Inst. Math. 246 227-1840
[6]  
Kapustin A(2006)Triangulated categories of singularities and equivalences between Landau–Ginzburg models Mat. Sb. 197 1827-317
[7]  
Li Y(1989)Derived categories and stable equivalence J. Pure Appl. Algebra 61 303-89
[8]  
Miyachi JI(1969)Injective dimensions of semiprimary rings J. Algebra 13 73-undefined
[9]  
Orlov D(undefined)undefined undefined undefined undefined-undefined
[10]  
Orlov D(undefined)undefined undefined undefined undefined-undefined