First-Principle Predictions of Electronic Properties and Half-Metallic Ferromagnetism in Vanadium-Doped Rock-Salt SrO

被引:0
作者
Mohamed Berber
Bendouma Doumi
Allel Mokaddem
Yesim Mogulkoc
Adlane Sayede
Abdelkader Tadjer
机构
[1] Centre Universitaire Nour Bachir El Bayadh,Faculty of Sciences, Department of Physics
[2] Dr. Tahar Moulay University of Saida,Theoretical Physics Laboratory
[3] U.S.T.H.B. Algiers,Department of Engineering Physics, Faculty of Engineering
[4] Ankara University,Unité de Catalyse et Chimie du Solide (UCCS), UMR CNRS 8181, Faculté des Sciences
[5] Université d’Artois,Modelling and Simulation in Materials Science Laboratory, Physics Department
[6] Djillali Liabes University of Sidi Bel-Abbes,undefined
来源
Journal of Electronic Materials | 2018年 / 47卷
关键词
Electronic structures; magnetic properties; half-metallic gap; ferromagnetic arrangement;
D O I
暂无
中图分类号
学科分类号
摘要
We have used first-principle methods of density functional theory within the full potential linearized augmented plane wave scheme to investigate the electronic and magnetic properties of cubic rock-salt, SrO, doped with vanadium (V) impurity as Sr1−xVxO at various concentrations, x = 0.25, 0.5, and 0.75. We have found that the ferromagnetic state arrangement of Sr1−xVxO is more stable compared to the anti-ferromagnetic state configuration. The electronic structures have a half-metallic (HM) ferromagnetic (F) behavior for Sr0.75V0.25O and Sr0.5V0.5O. This feature results from the metallic and semiconducting natures of majority-spin and minority-spin bands, respectively. The HMF gap decreases with the increasing concentration of vanadium atoms due to the broadening of 3d (V) levels in the gap, and hence the Sr0.25V0.75O becomes metallic ferromagnetic. The Sr0.75V0.25O revealed a large HM gap with spin polarization of 100%. The Sr1−xVxO compound at low concentrations seems a better candidate to explore the half-metallicity for practical spintronics applications.
引用
收藏
页码:449 / 456
页数:7
相关论文
共 135 条
[1]  
Wolf SA(2001)undefined Science 294 1488-undefined
[2]  
Awschalom DD(2004)undefined Rev. Mod. Phys. 76 323-undefined
[3]  
Buhrman RA(2008)undefined J. Mater. Sci. Mater. Electron. 19 828-undefined
[4]  
Daughton JM(2015)undefined Superlattices Microstruct. 88 139-undefined
[5]  
von Molnar S(2015)undefined Nov. Magn. 28 3163-undefined
[6]  
Roukes ML(2001)undefined J. Appl. Phys. 40 L485-undefined
[7]  
Chtchelkanova AV(2003)undefined Appl. Phys. Lett. 82 3047-undefined
[8]  
Treger DM(2007)undefined Phys. Rev. Lett. 98 137202-undefined
[9]  
Žutić I(2008)undefined Phys. Rev. B 78 134427-undefined
[10]  
Fabian J(1991)undefined Phys. Rev. B 44 943-undefined