Summing divergent perturbative series in a strong coupling limit. The Gell-Mann-Low function of the ϕ4 theory

被引:0
作者
I. M. Suslov
机构
[1] Russian Academy of Sciences,Kapitza Institute of Physical Problems
来源
Journal of Experimental and Theoretical Physics | 2001年 / 93卷
关键词
Spectroscopy; State Physics; Field Theory; Elementary Particle; Estimate Error;
D O I
暂无
中图分类号
学科分类号
摘要
An algorithm is proposed for determining asymptotics of the sum of a perturbative series in the strong coupling limit using given values of the expansion coefficients. Application of the algorithm is illustrated, methods for estimating errors are developed, and an optimization procedure is described. Applied to the ϕ4 theory, the algorithm yields the Gell-Mann-Low function asymptotics of the type β(g)≈7.4g0.96 for large g. The fact that the exponent is close to unity can be interpreted as a manifestation of the logarithmic branching of the type β(g)∼g (lng)−γ (with γ≈0.14), which is confirmed by independent evidence. In any case, the ϕ4 theory is self-consistent. The procedure of summing perturbative series with arbitrary values of the expansion parameter is discussed.
引用
收藏
页码:1 / 23
页数:22
相关论文
共 63 条
  • [1] Suslov I. M.(2000)undefined Pis’ma Zh. Éksp. Teor. Fiz. 71 315-undefined
  • [2] Lipatov L. N.(1977)undefined Zh. Éksp. Teor. Fiz. 72 411-undefined
  • [3] Zinn-Justin J.(1981)undefined Phys. Rep. 70 109-undefined
  • [4] Bogomolny E. B.(1980)undefined Sov. Sci. Rev., Sect. A 2 247-undefined
  • [5] Fateyev V. A.(1977)undefined Phys. Rev. Lett. 39 95-undefined
  • [6] Lipatov L. N.(1976)undefined Phys. Rev. Lett. 36 1351-undefined
  • [7] Le Guillou J. C.(1985)undefined J. Phys. Lett. 46 L137-undefined
  • [8] Zinn-Justin J.(1999)undefined Zh. Éksp. Teor. Fiz. 116 369-undefined
  • [9] Baker G. A.(1978)undefined Zh. Éksp. Teor. Fiz. 74 445-undefined
  • [10] Nickel B. G.(1979)undefined Teor. Mat. Fiz. 38 15-undefined