Integrable Systems with Dissipation on the Tangent Bundles of 2- and 3-Dimensional Spheres

被引:0
作者
Shamolin M.V. [1 ]
机构
[1] M. V. Lomonosov Moscow State University, Moscow
基金
俄罗斯基础研究基金会;
关键词
70E18; dissipation; dynamical system; integrability; transcendental first integral;
D O I
10.1007/s10958-020-04706-3
中图分类号
学科分类号
摘要
In this paper, we prove the explicit integrability of certain classes of dynamical systems on the tangent bundles of 2- and 3-dimensional spheres in the case where the forces are fields with so-called variable dissipation. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:498 / 507
页数:9
相关论文
共 30 条
[1]  
Arnold V.I., Kozlov V.V., Neustadt A.I., Mathematical Aspects of Classical and Celestial Mechanics [in Russian], (1985)
[2]  
Bourbaki N., Groupes et Algèbres de Lie, (1968)
[3]  
Chaplygin S.A., On the motion of heavy bodies in an incompressible fluid, Complete Collecton of Works, 1, pp. 133-135, (1933)
[4]  
Chaplygin S.A., Selected Works [in Russian], (1976)
[5]  
Georgievsky D.V., Shamolin M.V., First integrals of the equations of motion of a generalized gyroscope in ℝ<sup>n</sup> , Vestn. Mosk. Univ. Ser. 1, Mat. Mekh., 5, pp. 37-41, (2003)
[6]  
Kozlov V.V., Integrability and nonintegrability in Hamiltonian mechanics, Usp. Mat. Nauk, 38, 1, pp. 3-67, (1983)
[7]  
Shamolin M.V., On an integrable case in the spatial dynamics of a rigid body interacting with a medium, Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2, 65-68, (1997)
[8]  
Shamolin M.V., On the integrability in transcendental functions, Usp. Mat. Nauk, 53, 3, pp. 209-210, (1998)
[9]  
Shamolin M.V., New Jacobi-integrable cases in the dynamics of a rigid body interacting with a medium, Dokl. Ross. Akad. Nauk, 364, 5, pp. 627-629, (1999)
[10]  
Shamolin M.V., Jacobi integrability in the problem of the motion of a four-dimensional rigid body in a resisting medium, Dokl. Ross. Akad. Nauk, 375, 3, pp. 343-346, (2000)