On the Perfectness of Minimal Regular Partitions of the Edge Set of the n-Dimensional Cube

被引:0
作者
Rychkov K.L. [1 ]
机构
[1] Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk
关键词
Boolean function; correct partition of the edge set of the n-dimensional cube; lower complexity bound; π-scheme;
D O I
10.1134/S1990478919040148
中图分类号
学科分类号
摘要
We prove that, for n equal to 3, 5, and a power of 2, every minimal partition of the edge set of the n-dimensional cube is perfect. As a consequence, we obtain some description of the classes of all minimal parallel-serial contact schemes (π-schemes) realizing the linear Boolean functions that depend essentially on n variables for the corresponding values of n. © 2019, Pleiades Publishing, Ltd.
引用
收藏
页码:717 / 739
页数:22
相关论文
共 16 条
[1]  
Khrapchenko V.M., Complexity of the Realization of a Linear Function in the Class of II-Circuits, Mat. Zametki, 9, 1, pp. 35-40, (1971)
[2]  
Khrapchenko V.M., A Method of Determining Lower Bounds for the Complexity of II-Schemes, Mat. Zametki, 10, 1, pp. 83-92, (1971)
[3]  
Khrapchenko V.M., A Simplified Proof of a Lower Complexity Estimate, Discrete Math, 25, 2, pp. 82-84, (2013)
[4]  
Rychkov K.L., A Modification of Khrapchenko’s Method and Its Application to Estimation of Complexity of 7π-Schemes for Code Functions, Methods of Discrete Analysis in Theory of Graphs and Schemes, 42, pp. 91-98, (1985)
[5]  
Razborov A., Applications of Matrix Methods to the Theory of Lower Bounds in Computational Complexity, Combinatorica, 10, 1, pp. 81-93, (1990)
[6]  
Karchmer M., Wigderson A., Monotone Circuits for Connectivity Require Super-Logarithmic Depth, SIAM J. Discrete Math, 3, 2, pp. 255-265, (1990)
[7]  
Hastad J., The Shrinkage Exponent is 2, SIAM J. Comput, 27, 1, pp. 48-64, (1998)
[8]  
Cherukhin D.Y., To the Question of a Logical Representation for the Parity Counter, Neform. Nauka No., 2, pp. 14-23, (2009)
[9]  
Avgustinovich S.V., Vasil'ev Y.L., Rychkov K.L., The Computation Complexity in the Class of Formulas, Diskretn. Anal. Issled. Open, 19, 3, pp. 3-12, (2012)
[10]  
Vasil'ev Y.L., Rychkov K.L., A Lower Bound on Formula Size of a Ternary Linear Function, Diskretn. Anal. Issled. Open, 20, 4, pp. 15-26, (2013)