Behavior of Solutions to the Fuzzy Difference Equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{n+1}=A+\dfrac{B}{z_{n-m}}$$\end{document}

被引:0
作者
İ.I. Yalçınkaya
H. El-Metwally
D. T. Tollu
H. Ahmad
机构
[1] Necmettin Erbakan University,
[2] Mansoura University,undefined
[3] Near East University,undefined
[4] International Telematic University Uninettuno,undefined
关键词
fuzzy number; -cut; fuzzy difference equations; boundedness; convergence;
D O I
10.1134/S0001434623010327
中图分类号
学科分类号
摘要
引用
收藏
页码:292 / 302
页数:10
相关论文
共 43 条
[1]  
Deeba E.(1999)Analysis by fuzzy difference equations of a model of CO Appl. Math. Lett. 12 33-40
[2]  
Korvin A. De(2002) level in blood Soft Computing 6 456-461
[3]  
Papaschinopoulos G.(2019)On the fuzzy difference equation Fuzzy Sets and Systems 358 64-83
[4]  
Papadopoulos B. K.(2014)On the new solutions to the fuzzy difference equation Util. Math. 93 135-151
[5]  
Khastan A.(2008)On a fuzzy difference equation Fuzzy Sets and Systems 159 3259-3270
[6]  
Alijani Z.(1996)On the fuzzy difference equations of finance J. Differ. Equations Appl. 2 365-374
[7]  
Hatir E.(2002)A fuzzy difference equation with an application Fuzzy Sets and Systems 129 73-81
[8]  
Mansour T.(2003)On the fuzzy difference equation Fuzzy Sets and Systems 140 523-539
[9]  
Yalcinkaya I.(2005)Boundedness and asymptotic behavior of the solutions of a fuzzy difference equation J. Nonlinear Math. Phys. 12 300-315
[10]  
Chrysafis K. A.(1983)A fuzzy difference equation of a rational form J. Math. Anal. Appl. 91 552-558