Light-induced chloroplast movements in Oryza species

被引:0
|
作者
Miki Kihara
Tomokazu Ushijima
Yoshiyuki Yamagata
Yukinari Tsuruda
Takeshi Higa
Tomomi Abiko
Takahiko Kubo
Masamitsu Wada
Noriyuki Suetsugu
Eiji Gotoh
机构
[1] Kyushu University,Department of Forest Environmental Sciences, Faculty of Agriculture
[2] Kyoto University,Department of Botany, Graduate School of Science
[3] Osaka University,Institute for Protein Research
[4] Tokyo Metropolitan University,Department of Biological Sciences
[5] Setsunan University,Department of Agricultural Science and Technology, Faculty of Agriculture
来源
Journal of Plant Research | 2020年 / 133卷
关键词
Chloroplast movement; Light adaptation; Mesophyll chlorenchyma cell; Oryza;
D O I
暂无
中图分类号
学科分类号
摘要
Light-induced chloroplast movements control efficient light utilization in leaves, and thus, are essential for leaf photosynthesis and biomass production under fluctuating light conditions. Chloroplast movements have been intensively analyzed using wild-type and mutant plants of Arabidopsis thaliana. The molecular mechanism and the contribution to biomass production were elucidated. However, the knowledge of chloroplast movements is very scarce in other plant species, especially grass species including crop plants. Because chloroplast movements are efficient strategy to optimize light capture in leaves and thus promote leaf photosynthesis and biomass, analysis of chloroplast movements in crops is required for biomass production. Here, we analyzed chloroplast movements in a wide range of cultivated and wild species of genus Oryza. All examined Oryza species showed the blue-light-induced chloroplast movements. However, O. sativa and its ancestral species O. rufipogon, both of which are AA-genome species and usually grown in open condition where plants are exposed to full sunlight, showed the much weaker chloroplast movements than Oryza species that are usually grown under shade or semi-shade conditions, including O. officinalis, O. eichingeri, and O. granulata. Further detailed analyses of different O. officinalis accessions, including sun, semi-shade, and shade accessions, indicated that the difference in chloroplast movement strength between domesticated rice plants and wild species might result from the difference in habitat, and the shape of mesophyll chlorenchyma cells. The findings of this study provide useful information for optimizing Oryza growth conditions, and lay the groundwork for improving growth and yield in staple food crop Oryza sativa.
引用
收藏
页码:525 / 535
页数:10
相关论文
共 50 条